Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 58(6): 3041-3053, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38291736

RESUMO

Typically, SO2 unavoidably deactivates catalysts in most heterogeneous catalytic oxidations. However, for Pt-based catalysts, SO2 exhibits an extraordinary boosting effect in propane catalytic oxidation, but the promotive mechanism remains contentious. In this study, an in situ-formed tactful (Pt-S-O)-Ti structure was concluded to be a key factor for Pt/TiO2 catalysts with a substantial SO2 tolerance ability. The experiments and theoretical calculations confirm that the high degree of hybridization and orbital coupling between Pt 5d and S 3p orbitals enable more charge transfer from Pt to S species, thus forming the (Pt-S-O)-Ti structure with the oxygen atom dissociated from the chemisorbed O2 adsorbed on oxygen vacancies. The active oxygen atom in the (Pt-S-O)-Ti active structure is a robust site for C3H8 adsorption, leading to a better C3H8 combustion performance. This work can provide insights into the rational design of chemical bonds for high SO2 tolerance catalysts, thereby improving economic and environmental benefits.


Assuntos
Oxigênio , Titânio , Titânio/química , Oxirredução , Catálise , Adsorção
2.
Environ Res ; 261: 119707, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39084507

RESUMO

Soil salinization poses a significant global challenge, exerting adverse effects on both agriculture and ecosystems. Planting halophytes has the potential ability to improve saline-alkali land and enhance ecosystem multifunctionality (EMF). However, it remains unclear which halophytes are effective in improving saline-alkali land and what impact they have on the rhizosphere microbial communities and EMF. In this study, we evaluated the Na+ absorption capability of five halophytes (Grubovia dasyphylla, Halogeton glomeratus, Suaeda salsa, Bassia scoparia, and Reaumuria songarica) and assessed their rhizosphere microbial communities and EMF. The results showed that S. salsa possessed the highest shoot (3.13 mmol g-1) and root (0.92 mmol g-1) Na+ content, and its soil Na+ absorption, along with B. scoparia, was significantly higher than that of other plants. The soil pH, salinity, and Na+ content of the halophyte rhizospheres decreased by 6.21%, 23.49%, and 64.29%, respectively, when compared to the bulk soil. Extracellular enzymes in the halophyte rhizosphere soil, including α-glucosidase, ß-glucosidase, ß-1,4-N-acetyl-glucosaminidase, neutral phosphatase, and alkaline phosphatase, increased by 70.1%, 78.4%, 38.5%, 79.1%, and 64.9%, respectively. Furthermore, the halophyte rhizosphere exhibited higher network complexity of bacteria and fungi and EMF than bulk soil. The relative abundance of the dominant phyla Proteobacteria, Firmicutes, and Ascomycota in the halophyte rhizosphere soil increased by 9.4%, 8.3%, and 22.25%, respectively, and showed higher microbial network complexity compared to the bulk soil. Additionally, keystone taxa, including Muricauda, Nocardioides, and Pontibacter, were identified with notable effects on EMF. This study confirmed that euhalophytes are the best choice for saline-alkali land restoration. These findings provided a theoretical basis for the sustainable use of saline-alkali cultivated land.

3.
BMC Surg ; 24(1): 216, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39068399

RESUMO

BACKGROUND: In assessing the clinical utility and safety of 3.0 T intraoperative magnetic resonance imaging (iMRI) combined with multimodality functional MRI (fMRI) guidance in the resection of functional area gliomas, we conducted a study. METHOD: Among 120 patients with newly diagnosed functional area gliomas who underwent surgical treatment, 60 were included in each group: the integrated group with iMRI and fMRI and the conventional navigation group. Between-group comparisons were made for the extent of resection (EOR), preoperative and postoperative activities of daily living based on the Karnofsky performance status, surgery duration, and postoperative intracranial infection rate. RESULTS: Compared to the conventional navigation group, the integrated navigation group with iMRI and fMRI exhibited significant improvements in tumor resection (complete resection rate: 85.0% vs. 60.0%, P = 0.006) and postoperative life self-care ability scores (Karnofsky score) (median ± interquartile range: 90 ± 25 vs. 80 ± 30, P = 0.013). Additionally, although the integrated navigation group with iMRI and fMRI required significantly longer surgeries than the conventional navigation group (mean ± standard deviation: 411.42 ± 126.4 min vs. 295.97 ± 96.48 min, P<0.0001), there was no significant between-group difference in the overall incidence of postoperative intracranial infection (16.7% vs. 18.3%, P = 0.624). CONCLUSION: The combination of 3.0 T iMRI with multimodal fMRI guidance enables effective tumor resection with minimal neurological damage.


Assuntos
Neoplasias Encefálicas , Glioma , Imageamento por Ressonância Magnética , Humanos , Masculino , Feminino , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/diagnóstico por imagem , Glioma/cirurgia , Glioma/diagnóstico por imagem , Pessoa de Meia-Idade , Imageamento por Ressonância Magnética/métodos , Adulto , Idoso , Estudos Retrospectivos , Cirurgia Assistida por Computador/métodos , Neuronavegação/métodos , Resultado do Tratamento , Monitorização Intraoperatória/métodos , Procedimentos Neurocirúrgicos/métodos
4.
Sensors (Basel) ; 24(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38732820

RESUMO

In order to enhance crop harvesting efficiency, an automatic-driving tracked grain vehicle system was designed. Based on the harvester chassis, we designed the mechanical structure of a tracked grain vehicle with a loading capacity of 4.5 m3 and a grain unloading hydraulic system. Using the BODAS hydraulic controller, we implemented the design of an electronic control system that combines the manual and automatic operation of the chassis walking mechanism and grain unloading mechanism. We utilized a hybrid A* algorithm to plan the traveling path of the tracked grain vehicle, and the path-tracking controller of the tracked grain vehicle was designed by combining fuzzy control and pure pursuit algorithms. Leveraging binocular vision technology and semantic segmentation technology, we designed an automatic grain unloading control system with functions of grain tank recognition and grain unloading regulation control. Finally, we conducted experiments on automatic grain unloading control and automatic navigation control in the field. The results showed that both the precision of the path-tracking control and the automatic unloading system meet the requirements for practical unoccupied operations of the tracked grain vehicle.

5.
Materials (Basel) ; 17(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38730868

RESUMO

A sub-eutectic high-entropy alloy composed of CoCrFeNiNb0.25 was prepared using a combination of mechanical powder mixing and selective laser melting (SLM). The mechanical properties of the alloy were enhanced by employing an interlayer laser remelting process. This study demonstrates the feasibility of using mechanical mixing and SLM to form an CoCrFeNiNb0.25 alloy. The interlayer laser remelting process can effectively promote the melting of Nb particles introduced by mechanical mixing, release the stresses near the unfused Nb particles, and reduce their degradation of the specimen properties. The results indicate that the CoCrFeNiNb0.25 alloy, prepared using the interlayer laser remelting process, had an average microhardness of 376 HV, a tensile strength of 974 MPa, and an elongation at break of 10.51%. This process offers a viable approach for rapidly adjusting the composition of high-entropy alloys for SLM forming.

6.
Med Image Anal ; 91: 103018, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37976867

RESUMO

Recently, masked autoencoders have demonstrated their feasibility in extracting effective image and text features (e.g., BERT for natural language processing (NLP) and MAE in computer vision (CV)). This study investigates the potential of applying these techniques to vision-and-language representation learning in the medical domain. To this end, we introduce a self-supervised learning paradigm, multi-modal masked autoencoders (M3AE). It learns to map medical images and texts to a joint space by reconstructing pixels and tokens from randomly masked images and texts. Specifically, we design this approach from three aspects: First, taking into account the varying information densities of vision and language, we employ distinct masking ratios for input images and text, with a notably higher masking ratio for images; Second, we utilize visual and textual features from different layers for reconstruction to address varying levels of abstraction in vision and language; Third, we develop different designs for vision and language decoders. We establish a medical vision-and-language benchmark to conduct an extensive evaluation. Our experimental results exhibit the effectiveness of the proposed method, achieving state-of-the-art results on all downstream tasks. Further analyses validate the effectiveness of the various components and discuss the limitations of the proposed approach. The source code is available at https://github.com/zhjohnchan/M3AE.


Assuntos
Benchmarking , Idioma , Humanos , Software
7.
Biochem Pharmacol ; 226: 116380, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38945276

RESUMO

GBM is the most threatening form of brain tumor. The advancement of GBM is propelled by the growth, infiltration, and movement of cancer cells. Understanding the underlying mechanisms and identifying new therapeutic agents are crucial for effective GBM treatment. Our research focused on examining the withhold influence of Enhydrin on the destructive activity of GBM cells, both in laboratory settings and within living organisms. By employing network pharmacology and bioinformatics analysis, we have determined that Jun serves as the gene of interest, and EMT as the critical signaling pathway. Mechanistically, Enhydrin inhibits the activity of the target gene Jun to increase the expression of Smad7, which is infinitively regulated by the transcription factor Jun, and as the inhibitory transcription factor, Smad7 can down-regulate TGF-ß1 and the subsequent Smad2/3 signaling pathway. Consequently, this whole process greatly hinders the EMT mechanism of GBM, leading to the notable decline in cell proliferation, invasion, and migration. In summary, our research shows that Enhydrin hinders EMT by focusing on the Jun/Smad7/TGF-ß1 signaling pathway, presenting a promising target for treating GBM. Moreover, Enhydrin demonstrates encouraging prospects as a new medication for GBM treatment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Transdução de Sinais , Proteína Smad7 , Fator de Crescimento Transformador beta1 , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/genética , Humanos , Proteína Smad7/metabolismo , Proteína Smad7/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Linhagem Celular Tumoral , Animais , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Camundongos , Proteínas Proto-Oncogênicas c-jun/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Transição Epitelial-Mesenquimal/fisiologia , Camundongos Nus , Fenótipo , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos
8.
RSC Adv ; 14(26): 18317-18329, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38860244

RESUMO

Wound management remains a challenge in clinical practice. Nowadays, patients have an increasing demand for wound repair with enhanced speed and quality; therefore, there is a great need to seek therapeutic strategies that can promote rapid and effective wound healing. In this study, we developed a carboxymethyl cellulose hydrogel loaded with l-carnosine (CRN@hydrogel) for potential application as a wound dressing. In vitro experiments confirmed that CRN@hydrogel can release over 80% of the drug within 48 h and demonstrated its favorable cytocompatibility and blood compatibility, thus establishing its applicability for safe utilization in clinical practice. Using a rat model, we found that this hydrogel could promote and accelerate wound healing more effectively. These results indicate that the novel hydrogel can serve as an efficient therapeutic strategy for wound treatment.

9.
Phytomedicine ; 130: 155611, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38776737

RESUMO

BACKGROUND: Glioblastoma is the most malignant and prevalent primary human brain tumor, and the immunological microenvironment controlled by glioma stem cells is one of the essential elements contributing to its malignancy. The use of medications to ameliorate the tumor microenvironment may give a new approach for glioma treatment. METHODS: Glioma stem cells were separated from clinical patient-derived glioma samples for molecular research. Other studies, including CCK8, EdU, Transwell, and others, supported luteolin's ability to treat glioma progenitor cells. Network pharmacology and molecular docking models were used to study the drug target, and qRT-PCR, WB, and IF were used to evaluate the molecular mechanism. Intracranial xenografts were examined using HE and IHC, while macrophage polarization was examined using FC. RESULTS: We originally discovered that luteolin inhibits glioma stem cells. IL6 released by glioma stem cells is blocked during medication action and inhibits glioma stem cell proliferation and invasion via the IL6/STAT3 signaling pathway. Additionally, luteolin inhibits the secretion of TGFß1, affects the polarization function of macrophages in the microenvironment, inhibits the polarization of M2 macrophages in TAM, and further inhibits various functions of glioma stem cells by affecting the IL6/STAT3 signaling pathway, luteolin crosstalk TGFß1/SMAD3 signaling pathway, and so on. CONCLUSIONS: Through the suppression of the immunological microenvironment and inhibition of the IL6/STAT3 signaling pathway, our study determined the inhibitory effect of luteolin on glioma stem cells. This medication's dual inhibitory action, which has a significant negative impact on the glioma stem cells' malignant process, makes it both a viable anti-glioma medication and a candidate for targeted glioma microenvironment therapy.


Assuntos
Neoplasias Encefálicas , Proliferação de Células , Glioblastoma , Luteolina , Células-Tronco Neoplásicas , Fator de Transcrição STAT3 , Microambiente Tumoral , Luteolina/farmacologia , Microambiente Tumoral/efeitos dos fármacos , Humanos , Glioblastoma/tratamento farmacológico , Animais , Neoplasias Encefálicas/tratamento farmacológico , Proliferação de Células/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Interleucina-6/metabolismo , Linhagem Celular Tumoral , Macrófagos/efeitos dos fármacos , Fator de Crescimento Transformador beta1/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto , Proteína Smad3/metabolismo
10.
Phytomedicine ; 129: 155631, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38640858

RESUMO

BACKGROUND: The utilization of Chinese medicine as an adjunctive therapy for cancer has recently gained significant attention. Ferroptosis, a newly regulated cell death process depending on the ferrous ions, has been proved to be participated in glioma stem cells inactivation. PURPOSE: We aim to study whether ginsenoside Rg5 exerted inhibitory effects on crucial aspects of glioma stem cells, including cell viability, tumor initiation, invasion, self-renewal ability, neurosphere formation, and stemness. METHODS: Through comprehensive sequencing analysis, we identified a compelling association between ginsenoside Rg5 and the ferroptosis pathway, which was further validated through subsequent experiments demonstrating its ability to activate this pathway. RESULTS: To elucidate the precise molecular targets affected by ginsenoside Rg5 in gliomas, we conducted an intersection analysis between differentially expressed genes obtained from sequencing and a database-predicted list of transcription factors and potential targets of ginsenoside Rg5. This rigorous approach led us to unequivocally confirm NR3C1 (Nuclear Receptor Subfamily 3 Group C Member 1) as a direct target of ginsenoside Rg5, a finding consistently supported by subsequent experimental investigations. Moreover, we uncovered NR3C1's capacity to transcriptionally regulate ferroptosis -related genes HSPB1 and NCOA4. Strikingly, ginsenoside Rg5 induced notable alterations in the expression levels of both HSPB1 (Heat Shock Protein Family B Member 1) and NCOA4 (Nuclear Receptor Coactivator 4). Finally, our intracranial xenograft assays served to reaffirm the inhibitory effect of ginsenoside Rg5 on the malignant progression of glioblastoma. CONCLUSION: These collective findings strongly suggest that ginsenoside Rg5 hampers glioblastoma progression by activating ferroptosis through NR3C1, which subsequently modulates HSPB1 and NCOA4. Importantly, this novel therapeutic direction holds promise for advancing the treatment of glioblastoma.


Assuntos
Ferroptose , Ginsenosídeos , Glioblastoma , Ginsenosídeos/farmacologia , Ferroptose/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos , Animais , Linhagem Celular Tumoral , Coativadores de Receptor Nuclear/metabolismo , Camundongos , Camundongos Nus , Chaperonas Moleculares/metabolismo , Proteínas de Choque Térmico/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células-Tronco Neoplásicas/efeitos dos fármacos , Antineoplásicos Fitogênicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico
11.
Food Funct ; 15(15): 8030-8042, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38984966

RESUMO

Acute kidney injury (AKI) is a kind of critical kidney disease characterized by tubular injury, rapid decline of renal function and renal inflammation, with high clinical incidence. AKI has been shown to be associated with dysregulation of the gut microbiota and impaired intestinal barrier. Bifidobacterium has a positive impact on the treatment of many diseases. However, little is known about the role and mechanism of Bifidobacterium in AKI. Based on previous experiments, Bifidobacterium bifidum FL228.1 and FL276.1, which can relieve intestinal inflammation, and Bifidobacterium bifidum ZL.1, which has anti-inflammatory potential, were screened. This study aimed to investigate the effects of Bifidobacterium bifidum FL228.1, FL276.1 and ZL.1 on AKI, focusing on their role in the gut microbiota composition and intestinal barrier function. Our results showed that Bifidobacterium bifidum FL228.1, FL276.1 and ZL.1 effectively improved kidney function in mice with AKI by regulating the gut microbiota dysregulation, inhibiting intestinal inflammation and rebuilding the intestinal mucosal barrier. In addition, intervention with probiotics turned the gut microbiota disturbance caused by AKI into a normalized trend, reversed the adverse outcome of microbiota imbalance, and increased the abundance of potentially beneficial bacteria Bifidobacterium and Faecalibaculum. In summary, Bifidobacterium bifidum FL228.1, FL276.1, and ZL.1 alleviate adenine-induced AKI based on the gut-kidney axis. Although their mechanisms of action are different, their effect on alleviating AKI is almost the same.


Assuntos
Injúria Renal Aguda , Adenina , Bifidobacterium bifidum , Microbioma Gastrointestinal , Mucosa Intestinal , Probióticos , Animais , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/terapia , Camundongos , Probióticos/farmacologia , Masculino , Adenina/efeitos adversos , Mucosa Intestinal/microbiologia , Mucosa Intestinal/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Rim , Intestinos/microbiologia , Função da Barreira Intestinal
12.
ACS Appl Mater Interfaces ; 16(5): 6433-6446, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38289030

RESUMO

Marine biofouling, resulting from the adhesion of marine organisms to ship surfaces, has long been a significant issue in the maritime industry. In this paper, we focused on utilizing soft and hydrophilic hydrogels as a potential approach for antifouling (AF) coatings. Acrylic acid (AA) with a polyelectrolyte effect and N-(3-sulfopropyl)-N-(methacryloxyethyl)-N,N-dimethylammonium betaine (SBMA) with an antipolyelectrolyte effect were selected as monomers. By adjusting the monomer ratio, we were able to create hydrogel coatings that exhibited low swelling ratio in both fresh water and seawater. The Al(OH)3 nanoparticle, as a physical cross-linker, provided better mechanical properties (higher tensile strength and larger elongation at break) than the chemical cross-linker through the dynamic coordination bonds and plentiful hydrogen bonds. Additionally, we incorporated trehalose into the hydrogel, enabling the repair of the hydrogel network through covalent-like hydrogen bonding. The zwitterion compound SBMA endowed the hydrogel with excellent AF performance. It was found that the highest SBMA content did not lead to the best antibacterial performance, as bacterial adhesion quantity was also influenced by the charge of the hydrogel. The hydrogel with appropriate SBMA content being close to electrical neutrality exhibits the strongest zwitterionic property of PSBMA chains, resulting in the best antibacterial adhesion performance. Furthermore, the pronounced hydrophilicity of SBMA enhanced the lubrication of the hydrogel surface, thereby reducing the friction resistance when applied to the hull surface during ship navigation.

13.
Oncogene ; 2024 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-39098847

RESUMO

Exciting breakthroughs have been achieved in the field of glioblastoma with therapeutic interventions targeting specific ferroptosis targets. Nonetheless, the precise mechanisms through which circRNAs regulate the ferroptosis pathway have yet to be fully elucidated. Here we have identified a novel circRNA, circVPS8, which is highly expressed in glioblastoma. Our findings demonstrated that circVPS8 enhances glioma stem cells' viability, proliferation, sphere-forming ability, and stemness. Additionally, it inhibits ferroptosis in GSCs. In vivo, experiments further supported the promotion of glioblastoma growth by circVPS8. Mechanistically, circVPS8 acts as a scaffold, binding to both MKRN1 and SOX15, thus facilitating the ubiquitination of MKRN1 and subsequent degradation of SOX15. Due to competitive binding, the ubiquitination ability of MKRN1 towards HNF4A is reduced, leading to elevated HNF4A expression. Increased HNF4A expression, along with decreased SOX15 expression, synergistically inhibits ferroptosis in glioblastoma. Overall, our study highlights circVPS8 as a promising therapeutic target and provides valuable insights for clinically targeted therapy of glioblastoma.

14.
Sci Rep ; 14(1): 11630, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773115

RESUMO

The Jishishan Ms 6.2 earthquake occurred at 23:59 on December 18, 2023 in Gansu Province, China. We conducted a field survey to assess the hazards and damages caused by the earthquake and its associated geo-activities. Subsequently, we organized a seminar to discuss the possible causes of the destruction of a prehistoric site-Lajia Settlement-dated back to four thousand years B.P. and located only several kilometers away from the epicenter of the Jishishan earthquake. The Jishishan earthquake was unique for its hazard and disaster process, which featured ground shaking and a series of complex geological and geomorphological activities: sediment and soil spray piles, liquefaction, collapse, landslide, and mudflow along water channels. We define this phenomenon as the Jishishan earthquake ripple hazard (JERH). The most recent evidence from the JERH suggests that a prehistoric earthquake similar to the JERH, instead of riverine floods or earthquake-induced landslide dam outburst flood, as previously hypothesized, destroyed the Lajia Settlement.

15.
Sci Total Environ ; 916: 170205, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38272075

RESUMO

Salinity poses a significant threat to plant growth and development. The root microbiota plays a key role in plant adaptation to saline environments. Nevertheless, it remains poorly understood whether and how perennial grass plants accumulate specific root-derived bacteria when exposed to salinity. Here, we systematically analyzed the composition and variation of rhizosphere and endophytic bacteria, as well as root exudates in perennial ryegrass differing in salt tolerance grown in unsterilized soils with and without salt. Both salt-sensitive (P1) and salt-tolerant (P2) perennial ryegrass genotypes grew better in unsterilized soils compared to sterilized soils under salt stress. The rhizosphere and endophytic bacteria of both P1 and P2 had lower alpha-diversity under salt treatment compared to control. The reduction of alpha-diversity was more pronounced for P1 than for P2. The specific root-derived bacteria, particularly the genus Pseudomonas, were enriched in rhizosphere and endophytic bacteria under salt stress. Changes in bacterial functionality induced by salt stress differed in P1 and P2. Additionally, more root exudates were altered under salt stress in P2 than in P1. The content of important root exudates, mainly including phenylpropanoids, benzenoids, organic acids, had a significantly positive correlation with the abundance of rhizosphere and endophytic bacteria under salt stress. The results indicate that the interactions between root-derived bacteria and root exudates are crucial for the salt tolerance of perennial ryegrass, which provides a potential strategy to manipulate root microbiome for improved stress tolerance of perennial grass species.


Assuntos
Lolium , Tolerância ao Sal , Poaceae , Bactérias , Solo , Exsudatos e Transudatos , Rizosfera , Raízes de Plantas/microbiologia , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA