Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Lab Invest ; 104(2): 100298, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38008182

RESUMO

Enterovirus A71 (EV-A71) is one of the major causative agents of hand, foot, and mouth disease (HFMD) that majorly affects children. Most of the time, HFMD is a mild disease but can progress to severe complications, such as meningitis, brain stem encephalitis, acute flaccid paralysis, and even death. HFMD caused by EV-A71 has emerged as an acutely infectious disease of highly pathogenic potential in the Asia-Pacific region. In this review, we introduced the properties and life cycle of EV-A71, and the pathogenesis and the pathophysiology of EV-A71 infection, including tissue tropism and host range of virus infection, the diseases caused by the virus, as well as the genes and host cell immune mechanisms of major diseases caused by enterovirus 71 (EV-A71) infection, such as encephalitis and neurologic pulmonary edema. At the same time, clinicopathologic characteristics of EV-A71 infection were introduced. There is currently no specific medication for EV-A71 infection, highlighting the urgency and significance of developing suitable anti-EV-A71 agents. This overview also summarizes the targets of existing anti-EV-A71 agents, including virus entry, translation, polyprotein processing, replication, assembly and release; interferons; interleukins; the mitogen-activated protein kinase, phosphatidylinositol 3-kinase, and protein kinase B signaling pathways; the oxidative stress pathway; the ubiquitin-proteasome system; and so on. Furthermore, it overviews the effects of natural products, monoclonal antibodies, and RNA interference against EV-A71. It also discusses issues limiting the research of antiviral drugs. This review is a systematic and comprehensive summary of the mechanism and pathological characteristics of EV-A71 infection, the latest progress of existing anti-EV-A71 agents. It would provide better understanding and guidance for the research and application of EV-A71 infection and antiviral inhibitors.


Assuntos
Encefalite , Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Criança , Humanos , Enterovirus Humano A/fisiologia , Infecções por Enterovirus/tratamento farmacológico , Antivirais/farmacologia , Antivirais/uso terapêutico
2.
Chem Biodivers ; 21(4): e202301898, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369765

RESUMO

Polyoxometalates (POMs) are promising inorganic drug candidates for cancer chemotherapy. They are becoming attractive because of their easy accessibility and low cost. Herein, we report the synthesis and antitumor activity studies of four Lindqvist-type POMs with mixed-addenda atoms Na2[V4W2O16{(OCH2)3CR}] (R=-CH2OH, -CH3, -CH2CH3) and (Bu4N)2[V3W3{(OCH2)3CH2OOCCH2CH3}]. Compared with the current clinical applied antitumor drug 5-fluorouracil (5-FU) or Gemcitabine, analysis of MTT/CCK-8 assay, colony formation and wound healing assay revealed that the {V4W2} POMs had acceptable cytotoxicity in normal cells (293T) and significant inhibitory effects on cell proliferation and migration in three human tumor cell lines: human lung carcinoma cells (A549), human cervical carcinoma cells (HeLa), and human breast cancer cells (MCF-7). Interestingly, among the POMs analyzed, the therapeutic index (TI) of the {V4W2} POM with R= -CH2OH was relatively the most satisfactory. Thus, it was subsequently used for further studies. Flow cytometry analysis showed it prompted cellular apoptosis rate. qRT-PCR and Western blotting analysis indicated that multiple cell death pathways were activated including apoptosis, autophagy, necroptosis and pyroptosis during the POM-mediated antitumor process. In conclusion, our study shows that the polyoxotungstovanadate has great potential to be developed into a broad-spectrum antitumor chemotherapeutic drug.


Assuntos
Antineoplásicos , Carcinoma , Humanos , Antineoplásicos/farmacologia , Fluoruracila/farmacologia , Fluoruracila/uso terapêutico , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Carcinoma/tratamento farmacológico
3.
Biochem Biophys Res Commun ; 584: 46-52, 2021 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-34768081

RESUMO

Efavirenz (EFV) is a non-nucleoside reverse transcriptase inhibitor (NNRTI), which is widely used for anti-HIV-1. Evidences revealed that several central nervous system side effects could be observed in mice and patients with administration of EFV. However, the detailed mechanisms are still unknown. In this study, we investigated the effects of long-term EFV treatment on cognitive functions and the potential underlying mechanisms in mice. We maintained C57BL/6 mice aged 2 months with treatment containing 40 or 80 mg/kg/day EFV for 5 months, while control group treated with saline. The cognitive functions were evaluated by novel object recognition test, Barnes maze test and Morris water maze. The results showed significant short-term memory impairment in 40 and 80 mg/kg groups, and notable spatial learning and memory impairments in 80 mg/kg group, without any spontaneous activity alteration. Moreover, EFV induced impairments in dendritic integrity and synaptic plasticity in hippocampus. Furthermore, Significant increases were observed in the expression levels of pro-IL-1ß, a similar tendency of TNF-α and phosphorylation of p65 of the 80 mg/kg group compared with control group. These results imply that long-term EFV treatment causes synaptic dysfunction resulting in cognitive deficits, which might be induced by the enhanced pro-inflammatory cytokines IL-1ß and TNF-α via activating NF-κB pathway.


Assuntos
Alcinos/toxicidade , Benzoxazinas/toxicidade , Cognição/efeitos dos fármacos , Disfunção Cognitiva/fisiopatologia , Ciclopropanos/toxicidade , Transtornos da Memória/fisiopatologia , Doenças Neuroinflamatórias/fisiopatologia , Animais , Cognição/fisiologia , Disfunção Cognitiva/induzido quimicamente , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/induzido quimicamente , Camundongos Endogâmicos C57BL , Doenças Neuroinflamatórias/induzido quimicamente , Inibidores da Transcriptase Reversa/toxicidade , Aprendizagem Espacial/efeitos dos fármacos , Aprendizagem Espacial/fisiologia , Sinapsinas/metabolismo , Sinaptofisina/metabolismo , Sinaptotagmina I/metabolismo , Fatores de Tempo
4.
Virol J ; 17(1): 173, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33176821

RESUMO

With CA16, enterovirus-71 is the causative agent of hand foot and mouth disease (HFMD) which occurs mostly in children under 5 years-old and responsible of several outbreaks since a decade. Most of the time, HFMD is a mild disease but can progress to severe complications such as meningitis, brain stem encephalitis, acute flaccid paralysis (AFP) and even death; EV71 has been identified in all severe cases. Therefore, it is actually one of the most public health issues that threatens children's life. [Formula: see text] is a protease which plays important functions in EV71 infection. To date, a lot of [Formula: see text] inhibitors have been tested but none of them has been approved yet. Therefore, a drug screening is still an utmost importance in order to treat and/or prevent EV71 infections. This work highlights the EV71 life cycle, [Formula: see text] functions and [Formula: see text] inhibitors recently screened. It permits to well understand all mechanisms about [Formula: see text] and consequently allow further development of drugs targeting [Formula: see text]. Thus, this review is helpful for screening of more new [Formula: see text] inhibitors or for designing analogues of well known [Formula: see text] inhibitors in order to improve its antiviral activity.


Assuntos
Antivirais/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Enterovirus Humano A/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Doença de Mão, Pé e Boca/tratamento farmacológico , RNA Viral/antagonistas & inibidores , Animais , Antivirais/isolamento & purificação , Criança , Avaliação Pré-Clínica de Medicamentos/tendências , Enterovirus Humano A/enzimologia , Inibidores Enzimáticos/isolamento & purificação , Doença de Mão, Pé e Boca/complicações , Doença de Mão, Pé e Boca/virologia , Humanos , Camundongos , Inibidores da Síntese de Ácido Nucleico/farmacologia , Filogenia
5.
Molecules ; 25(6)2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32204528

RESUMO

Coxsackievirus B3 (CVB3) is the most common cause of acute and chronic viral myocarditis, primarily in children, while human adenovirus infections represent a significant cause of morbidity and mortality worldwide, in people of all ages. A series of novel 2-benzoxyl-phenylpyridine derivatives were evaluated for their potential antiviral activities against CVB3 and adenovirus type 7 (ADV7). Preliminary assays indicated that some of these compounds exhibited excellent antiviral effects on both CVB3 and ADV7 viruses; they could effectively inhibit virus-induced cytopathic effects, reduce viral progeny yields, and had similar or superior antiviral activities compared with the control drug, ribavirin. Further, these compounds targeted the early stages of CVB3 replication in cells, including viral RNA replication and protein synthesis, rather than inactivating the virus directly, inhibiting virus adsorption/entry, or affecting viral release from cells. Our data demonstrate that the tested 2-benzoxyl-phenylpyridine derivatives are effective inhibitors of CVB3 and ADV7, raising the possibility that these compounds might be feasible candidates for anti-viral agents.


Assuntos
Antivirais/síntese química , Enterovirus Humano B/fisiologia , Piridinas/síntese química , Adenovírus Humanos/efeitos dos fármacos , Antivirais/química , Antivirais/farmacologia , Enterovirus Humano B/efeitos dos fármacos , Células HeLa , Humanos , Estrutura Molecular , Piridinas/química , Piridinas/farmacologia , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
6.
Virol J ; 15(1): 116, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30064445

RESUMO

BACKGROUND: Enterovirus 71 (EV71) is one of the major causative agents of hand, foot, and mouth disease (HFMD), which is sometimes associated with severe central nervous system disease in children. There is currently no specific medication for EV71 infection. Quercetin, one of the most widely distributed flavonoids in plants, has been demonstrated to inhibit various viral infections. However, investigation of the anti-EV71 mechanism has not been reported to date. METHODS: The anti-EV71 activity of quercetin was evaluated by phenotype screening, determining the cytopathic effect (CPE) and EV71-induced cells apoptosis. The effects on EV71 replication were evaluated further by determining virus yield, viral RNA synthesis and protein expression, respectively. The mechanism of action against EV71 was determined from the effective stage and time-of-addition assays. The possible inhibitory functions of quercetin via viral 2Apro, 3Cpro or 3Dpol were tested. The interaction between EV71 3Cpro and quercetin was predicted and calculated by molecular docking. RESULTS: Quercetin inhibited EV71-mediated cytopathogenic effects, reduced EV71 progeny yields, and prevented EV71-induced apoptosis with low cytotoxicity. Investigation of the underlying mechanism of action revealed that quercetin exhibited a preventive effect against EV71 infection and inhibited viral adsorption. Moreover, quercetin mediated its powerful therapeutic effects primarily by blocking the early post-attachment stage of viral infection. Further experiments demonstrated that quercetin potently inhibited the activity of the EV71 protease, 3Cpro, blocking viral replication, but not the activity of the protease, 2Apro, or the RNA polymerase, 3Dpol. Modeling of the molecular binding of the 3Cpro-quercetin complex revealed that quercetin was predicted to insert into the substrate-binding pocket of EV71 3Cpro, blocking substrate recognition and thereby inhibiting EV71 3Cpro activity. CONCLUSIONS: Quercetin can effectively prevent EV71-induced cell injury with low toxicity to host cells. Quercetin may act in more than one way to deter viral infection, exhibiting some preventive and a powerful therapeutic effect against EV71. Further, quercetin potently inhibits EV71 3Cpro activity, thereby blocking EV71 replication.


Assuntos
Enterovirus Humano A/efeitos dos fármacos , Infecções por Enterovirus/prevenção & controle , Quercetina/farmacologia , Proteínas Virais/antagonistas & inibidores , Proteases Virais 3C , Animais , Antivirais/química , Antivirais/farmacologia , Linhagem Celular Tumoral , Chlorocebus aethiops , Cisteína Endopeptidases/metabolismo , Efeito Citopatogênico Viral/efeitos dos fármacos , Enterovirus Humano A/fisiologia , Infecções por Enterovirus/virologia , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica , Quercetina/química , Quercetina/metabolismo , RNA Viral/biossíntese , RNA Viral/efeitos dos fármacos , Células Vero , Proteínas Virais/biossíntese , Proteínas Virais/efeitos dos fármacos , Proteínas Virais/metabolismo , Ligação Viral/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
7.
J Med Virol ; 88(4): 653-63, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26331371

RESUMO

Hepatitis B virus (HBV) infection is one of the most serious and prevalent health problems worldwide. Current anti-HBV medications have a number of drawbacks, such as adverse effects and drug resistance; thus, novel potential anti-HBV reagents are needed. Selenium (Se) has been shown to be involved in both human immunodeficiency virus and hepatitis C virus infections, but its role in HBV infection remains unclear. To address this, sodium selenite (Na2SeO3 ) was applied to three HBV cell models: HepG2.2.15 cells, and HuH-7 cells transfected with either 1.1 or 1.3× HBV plasmids. Cytotoxicity of Na2SeO3 was examined by Cell Counting Kit-8. Levels of viral antigen expression, transcripts, and encapsidated viral DNA were measured by enzyme-linked immunosorbent assay, northern blot, and Southern blot, respectively. There was no obvious cytotoxicity in either HepG2.2.15 or HuH-7 cells with <2.5 µM Na2SeO3 . Below this concentration, Na2SeO3 suppressed HBsAg and HBeAg production, HBV transcript level, and amount of genomic DNA in all three tested models, and suppression level was enhanced in line with increases in Na2 SeO3 concentration or treatment time. Moreover, the inhibitory effect of Na2SeO3 on HBV replication can be further enhanced by combined treatment with lamivudine, entecavir, or adefovir. Thus, the present study clearly proves that Na2SeO3 suppresses HBV protein expression, transcription, and genome replication in hepatoma cell models in a dose- and time-dependent manner.


Assuntos
Antivirais/farmacologia , Vírus da Hepatite B/efeitos dos fármacos , Vírus da Hepatite B/fisiologia , Hepatócitos/virologia , Selenito de Sódio/farmacologia , Transcrição Gênica/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Antígenos Virais/análise , Antivirais/toxicidade , Northern Blotting , Southern Blotting , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , DNA Viral/análise , Interações Medicamentosas , Ensaio de Imunoadsorção Enzimática , Vírus da Hepatite B/genética , Humanos , RNA Viral/análise , Selenito de Sódio/toxicidade
8.
J Virol ; 87(20): 10968-79, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23903847

RESUMO

Congenital human cytomegalovirus (HCMV) infection is the most frequent infectious cause of birth defects, primarily neurological disorders. Neural progenitor/stem cells (NPCs) are the major cell type in the subventricular zone and are susceptible to HCMV infection. In culture, the differentiation status of NPCs may change with passage, which in turn may alter susceptibility to virus infection. Previously, only early-passage (i.e., prior to passage 9) NPCs were studied and shown to be permissive to HCMV infection. In this study, NPC cultures derived at different gestational ages were evaluated after short (passages 3 to 6) and extended (passages 11 to 20) in vitro passages for biological and virological parameters (i.e., cell morphology, expression of NPC markers and HCMV receptors, viral entry efficiency, viral gene expression, virus-induced cytopathic effect, and release of infectious progeny). These parameters were not significantly influenced by the gestational age of the source tissues. However, extended-passage cultures showed evidence of initiation of differentiation, increased viral entry, and more efficient production of infectious progeny. These results confirm that NPCs are fully permissive for HCMV infection and that extended-passage NPCs initiate differentiation and are more permissive for HCMV infection. Later-passage NPCs being differentiated and more permissive for HCMV infection suggest that HCMV infection in fetal brain may cause more neural cell loss and give rise to severe neurological disabilities with advancing brain development.


Assuntos
Encéfalo/citologia , Citomegalovirus/crescimento & desenvolvimento , Células-Tronco Neurais/fisiologia , Células-Tronco Neurais/virologia , Diferenciação Celular , Humanos , Inoculações Seriadas
9.
Virol J ; 11: 30, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24529027

RESUMO

BACKGROUND: Hepatitis B virus (HBV) transcription and replication are essentially restricted to hepatocytes. Based on the HBV enhancer and promoter complex that links hepatic glucose metabolism to its transcription and replication, HBV adopts a regulatory system that is unique to the hepatic gluconeogenic genes. CRTC2, the CREB-regulated transcription coactivator 2, is a critical switch modulating the gluconeogenic program in response to both hormonal and intracellular signals. However, the relationship between CRTC2 and HBV transcription and replication remains unclear. METHODS: To analyze the influence of CRTC2 on HBV transcription and replication, CRTC2 expression construct or siRNA was cotransfected with plasmids containing enhancer II/core promoter complex-controlled luciferase or 1.3× wtHBV genome in Huh-7 cells. Luciferase activity, HBV core protein expression, HBV transcripts, and DNA replication intermediates were measured by luciferase assays, western blots, real-time polymerase chain reaction (PCR), and Southern blots, respectively. Forskolin (FSK) or phosphorylation-defective CRTC2 mutants were further utilized to elucidate the potential mechanism. siRNA against peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α) was also used to examine the mediator involved in CRTC2-regulated HBV biosynthesis in Huh-7 cells. RESULTS: CRTC2 overexpression increased HBV transcription and replication in Huh-7 cells, including levels of core protein expression, mRNA, and DNA replication intermediates. Correspondingly, CRTC2 knock down by siRNA reduced HBV biosynthesis. FSK treatment strongly enhanced the effect of CRTC2 through triggering the dephosphorylation and nuclear entry of CRTC2. The phosphorylation-defective mutant (S171A/S275A) of CRTC2 localized in the nucleus and was constitutively active, which dramatically promoted HBV transcription and replication similar to FSK-treated wild-type CRTC2. Knock down of PGC1α, whose expression was induced by CRTC2, greatly compromised the enhancing effect of CRTC2 on HBV transcription and replication. CONCLUSIONS: Our results clearly indicate that non-phosphorylated CRTC2 strongly enhances HBV biosynthesis through inducing PGC1α expression. Further study of the mechanisms will elucidate the importance of metabolic signals on HBV transcription and replication, and offer insight into potential targets for developing anti-HBV agents.


Assuntos
Vírus da Hepatite B/fisiologia , Hepatócitos/virologia , Interações Hospedeiro-Patógeno , Fatores de Transcrição/biossíntese , Fatores de Transcrição/metabolismo , Transcrição Gênica , Replicação Viral , Fusão Gênica Artificial , Southern Blotting , Western Blotting , Linhagem Celular , Expressão Gênica , Inativação Gênica , Genes Reporter , Hepatócitos/fisiologia , Humanos , Luciferases/análise , Luciferases/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Reação em Cadeia da Polimerase em Tempo Real
10.
Viruses ; 16(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38399989

RESUMO

The coronavirus disease 2019 (COVID-19) global pandemic, caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), has been marked by severe cases demonstrating a "cytokine storm", an upsurge of pro-inflammatory cytokines in the bloodstream. NLRP3 inflammasomes, integral to the innate immune system, are speculated to be activated by SARS-CoV-2 within host cells. This review investigates the potential correlation between NLRP3 inflammasomes and COVID-19, exploring the cellular and molecular mechanisms through which SARS-CoV-2 triggers their activation. Furthermore, promising strategies targeting NLRP3 inflammasomes are proposed to mitigate the excessive inflammatory response provoked by SARS-CoV-2 infection. By synthesizing existing studies, this paper offers insights into NLRP3 as a therapeutic target, elucidating the interplay between COVID-19 and its pathophysiology. It serves as a valuable reference for future clinical approaches in addressing COVID-19 by targeting NLRP3, thus providing potential avenues for therapeutic intervention.


Assuntos
COVID-19 , Humanos , Citocinas , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , SARS-CoV-2/fisiologia
11.
J Biol Chem ; 287(36): 30181-90, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22791717

RESUMO

Hepatitis B virus (HBV) is a noncytopathic human hepadnavirus that causes acute, chronic hepatitis and hepatocellular carcinoma (HCC). As the clinical utility of current therapies is limited, new anti-HBV agents and sources for such agents are still highly sought after. Here, we report that Mucroporin-M1, a scorpion venom-derived peptide, reduces the amount of extracellular HBsAg, HBeAg, and HBV DNA productions of HepG2.2.15 cells in a dose-dependent manner and inhibits HBV capsid DNA, HBV intracellular RNA replication intermediates and the HBV Core protein in the cytoplasm of HepG2.2.15 cells. Using a mouse model of HBV infection, we found that HBV replication was significantly inhibited by intravenous injection of the Mucroporin-M1 peptide. This inhibitory activity was due to a reduction in HBV promoter activity caused by a decrease in the binding of HNF4α to the precore/core promoter region. Furthermore, we confirmed that Mucroporin-M1 could selectively activate mitogen-activated protein kinases (MAPKs) and lead to the down-regulation of HNF4α expression, which explains the decreased binding of HNF4α to the HBV promoter. Moreover, when the protein phosphorylation activity of the MAPK pathway was inhibited, both HNF4α expression and HBV replication recovered. Finally, we proved that treatment with the Mucroporin-M1 peptide increased phosphorylation of the MAPK proteins in HBV-harboring mice. These results implicate Mucroporin-M1 peptide can activate the MAPK pathway and then reduce the expression of HNF4α, resulting in the inhibition of HBV replication in vitro and in vivo. Our work also opens new doors to discovering novel anti-HBV agents or sources.


Assuntos
Antivirais/farmacologia , Vírus da Hepatite B/fisiologia , Hepatite B/tratamento farmacológico , Fator 4 Nuclear de Hepatócito/biossíntese , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Peptídeos/farmacologia , Venenos de Escorpião/farmacologia , Replicação Viral/efeitos dos fármacos , Animais , Capsídeo/metabolismo , DNA Viral/biossíntese , DNA Viral/genética , Modelos Animais de Doenças , Regulação da Expressão Gênica , Células Hep G2 , Hepatite B/genética , Hepatite B/metabolismo , Antígenos de Superfície da Hepatite B/genética , Antígenos de Superfície da Hepatite B/metabolismo , Antígenos E da Hepatite B/genética , Antígenos E da Hepatite B/metabolismo , Fator 4 Nuclear de Hepatócito/genética , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Fosforilação/efeitos dos fármacos , Fosforilação/genética , Replicação Viral/fisiologia
12.
Virus Genes ; 46(3): 393-403, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23397077

RESUMO

As a highly efficient delivery system, lentiviral vectors (LVs) have become a powerful tool to assess the antiviral efficacy of RNA drugs such as short hairpin RNA (shRNA) and decoys. Furthermore, recent advanced systems allow controlled expression of the effector RNA via coexpression of a tetracycline/doxycycline (DOX) responsive repressor (tTR-KRAB). Herein, this system was utilized to assess the antiviral effects of LV-encoded shRNAs targeting three conserved regions on the pregenomic RNA of hepatitis B virus (HBV), namely the region coding for the reverse transcriptase (RT) domain of the viral polymerase (LV-HBV-shRNA1), the core promoter (CP; LV-HBV-shRNA2), and the direct repeat 1 (DR1; LV-HBV-shRNA3). Transduction of just the LV-HBV-shRNA vectors into the stably HBV expressing HepG2.2.15 cell line showed significant reductions in secreted HBsAg and HBeAg, intracellular HBcAg as well as HBV RNA and DNA replicative intermediates for all vectors, however, most pronouncedly for the DR1-targeting shRNA3. The corresponding vector was therefore applied in the DOX-controlled system. Notably, strong interference with HBV replication was found in the presence of the inducer DOX whereas the antiviral effect was essentially ablated in its absence; hence, the silencing effect of the shRNA and consequently HBV replication could be strictly regulated by DOX. This newly established system may therefore provide a valuable platform to study the antiviral efficacy of RNA drugs against HBV in a regulated manner, and even be applicable in vivo.


Assuntos
Vírus da Hepatite B/fisiologia , RNA Interferente Pequeno/metabolismo , RNA Viral/metabolismo , Replicação Viral , Linhagem Celular , Expressão Gênica , Vetores Genéticos , Vírus da Hepatite B/genética , Hepatócitos/virologia , Humanos , Lentivirus/genética , RNA Interferente Pequeno/genética , RNA Viral/genética , Transdução Genética
13.
Front Cell Infect Microbiol ; 13: 1218039, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37360532

RESUMO

Corona Virus Disease 2019 (COVID-19) continues to be a burden for human health since its outbreak in Wuhan, China in December 2019. Recently, the emergence of new variants of concerns (VOCs) is challenging for vaccines and drugs efficiency. In severe cases, SARS-CoV-2 provokes inappropriate hyperinflammatory immune responses leading to acute respiratory distress syndrome (ARDS) and even death. This process is regulated by inflammasomes which are activated after binding of the viral spike (S) protein to cellular angiotensin-converting enzyme 2 (ACE2) receptor and triggers innate immune responses. Therefore, the formation of "cytokines storm" leads to tissue damage and organ failure. NOD-like receptor family pyrin domain containing 3 (NLRP3) is the best studied inflammasome known to be activated during SARS-CoV-2 infection. However, some studies suggest that SARS-CoV-2 infection is associated with other inflammasomes as well; such as NLRP1, absent in melanoma-2 (AIM-2), caspase-4 and -8 which were mostly found during dsRNA virus or bacteria infection. Multiple inflammasome inhibitors that exist for other non-infectious diseases have the potential to be used to treat severe SARS-CoV-2 complications. Some of them have showed quite encouraging results during pre- and clinical trials. Nevertheless, further studies are in need for the understanding and targeting of SARS-Cov-2-induced inflammasomes; mostly an update of its role during the new VOCs infection is necessary. Hence, this review highlights all reported inflammasomes involved in SARS-CoV-2 infection and their potential inhibitors including NLRP3- and Gasdermin D (GSDMD)-inhibitors. Further strategies such as immunomodulators and siRNA are also discussed. As highly related to COVID-19 severe cases, developing inflammasome inhibitors holds a promise to treat severe COVID-19 syndrome effectively and reduce mortality.


Assuntos
COVID-19 , Inflamassomos , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , SARS-CoV-2/fisiologia , Citocinas/metabolismo
14.
Nutrients ; 15(5)2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36904097

RESUMO

Diabetes mellitus is a complex disorder characterized by insufficient insulin production or insulin resistance, which results in a lifelong dependence on glucose-lowering drugs for almost all patients. During the fight with diabetes, researchers are always thinking about what characteristics the ideal hypoglycemic drugs should have. From the point of view of the drugs, they should maintain effective control of blood sugar, have a very low risk of hypoglycemia, not increase or decrease body weight, improve ß-cell function, and delay disease progression. Recently, the advent of oral peptide drugs, such as semaglutide, brings exciting hope to patients with chronic diabetes. Legumes, as an excellent source of protein, peptides, and phytochemicals, have played significant roles in human health throughout human history. Some legume-derived peptides with encouraging anti-diabetic potential have been gradually reported over the last two decades. Their hypoglycemic mechanisms have also been clarified at some classic diabetes treatment targets, such as the insulin receptor signaling pathway or other related pathways involved in the progress of diabetes, and key enzymes including α-amylase, α-glucosidase, and dipeptidyl peptidase-IV (DPP-4). This review summarizes the anti-diabetic activities and mechanisms of peptides from legumes and discusses the prospects of these peptide-based drugs in type 2 diabetes (T2D) management.


Assuntos
Diabetes Mellitus Tipo 2 , Inibidores da Dipeptidil Peptidase IV , Fabaceae , Humanos , Inibidores da Dipeptidil Peptidase IV/química , Hipoglicemiantes/uso terapêutico , Peptídeos/química
15.
Viruses ; 15(3)2023 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-36992493

RESUMO

Enterovirus A71, a non-enveloped single-stranded (+) RNA virus, enters host cells through three stages: attachment, endocytosis and uncoating. In recent years, receptors/co-receptors anchored on the host cell membrane and involved in this process have been continuously identified. Among these, hSCARB-2 was the first receptor revealed to specifically bind to a definite site of the EV-A71 viral capsid and plays an indispensable role during viral entry. It actually acts as the main receptor due to its ability to recognize all EV-A71 strains. In addition, PSGL-1 is the second EV-A71 receptor discovered. Unlike hSCARB-2, PSGL-1 binding is strain-specific; only 20% of EV-A71 strains isolated to date are able to recognize and bind it. Some other receptors, such as sialylated glycan, Anx 2, HS, HSP90, vimentin, nucleolin and fibronectin, were discovered successively and considered as "co-receptors" because, without hSCARB-2 or PSGL-1, they are not able to mediate entry. For cypA, prohibitin and hWARS, whether they belong to the category of receptors or of co-receptors still needs further investigation. In fact, they have shown to exhibit an hSCARB-2-independent entry. All this information has gradually enriched our knowledge of EV-A71's early stages of infection. In addition to the availability of receptors/co-receptors for EV-A71 on host cells, the complex interaction between the virus and host proteins and various intracellular signaling pathways that are intricately connected to each other is critical for a successful EV-A71 invasion and for escaping the attack of the immune system. However, a lot remains unknown about the EV-A71 entry process. Nevertheless, researchers have been continuously interested in developing EV-A71 entry inhibitors, as this study area offers a large number of targets. To date, important progress has been made toward the development of several inhibitors targeting: receptors/co-receptors, including their soluble forms and chemically designed compounds; virus capsids, such as capsid inhibitors designed on the VP1 capsid; compounds potentially interfering with related signaling pathways, such as MAPK-, IFN- and ATR-inhibitors; and other strategies, such as siRNA and monoclonal antibodies targeting entry. The present review summarizes these latest studies, which are undoubtedly of great significance in developing a novel therapeutic approach against EV-A71.


Assuntos
Enterovirus Humano A , Infecções por Enterovirus , Enterovirus , Humanos , Enterovirus Humano A/genética , Enterovirus/metabolismo , Proteínas do Capsídeo/genética , Capsídeo/metabolismo
16.
Eur J Pharm Sci ; 186: 106445, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37044201

RESUMO

A series of 2-Benzoxyl-Phenylpyridine derivatives were evaluated for their potential antiviral activities against EV71. The preliminary assays indicated that some of these compounds exhibited excellent antiviral effects on EV71, they could effectively inhibit virus-induced cytopathic effects (CPEs), reduce progeny viral yields, and present similar or better antiviral activities compared to the positive control drug ribavirin. Among these derivatives, compounds WY7, WY13 and WY14 showed the most potency against EV71. Investigation of the underlying mechanism of action revealed that these compounds target EV71 replication in cells post infection, they could profoundly inhibit viral RNA replication and protein synthesis, and inhibit virus-induced cell apoptosis. Further experiments demonstrated that compound WY7 potently inhibited the activity of the EV71 3C protease (3Cpro), and to some extent, it affected the activity of 3D polymerase (3Dpol), thus blocking viral replication, but not the activity of the 2A proteinase (2Apro). Modeling of the molecular binding of the 3Cpro-WY7 complex revealed that compound WY7 was predicted to insert into the substrate-binding pocket of EV71 3Cpro, blocking substrate recognition and thereby inhibiting EV71 3Cpro activity. These results indicate that these compounds might be feasible therapeutic agents against EV71 infection and that these compounds may provide promising lead scaffolds for the further design and synthesis of potential antiviral agents.


Assuntos
Antivirais , Replicação Viral , Antivirais/química
17.
Heliyon ; 9(11): e21307, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027859

RESUMO

N6-methyladenosine (m6A) methylation of human immunodeficiency virus type 1 (HIV-1) RNA regulates viral replication, and the m6A of host RNA is affected by HIV-1 infection, but its global pattern and function are still unclear. In this study, we report that the number and position of m6A peaks in huge genes of human microglial HMC3 cells were modulated by a single cycle HIV-1 pseudotyped with VSV-G envelope glycoprotein infection using methylated RNA immunoprecipitation sequencing (MeRIP-seq). A conjoint analysis of MeRIP-seq and high-throughput sequencing for mRNA (RNA-seq) explored four groups of clearly classified genes, including 45 hyper-up (m6A-mRNA), 45 hyper-down, 120 hypo-up, and 54 hypo-down genes, in HIV-1 infected cells compared to uninfected ones. KEGG pathway analysis showed that these genes were mainly enriched in the Wnt and TNF signaling pathway, and cytokine-cytokine receptor interaction, which might be related to the immune response in HMC3 cells. And some of these genes might be associated with the pathway of axon guidance and neuroactive ligan-receptor interaction, which affect the neuronal state. However, the cognitive disorders caused by HIV-1 is associated with inflammatory changes that have not yet been well clarified. Furthermore, we confirmed the expression and m6A levels of four genes using RT-PCR and MeRIP-qPCR. Similar to the sequencing results, the expressions of these genes were significantly upregulated by HIV-1 infection. And the m6A level of IL-6 was downregulated, and those of HLA-B, CFB, and OLR1 were upregulated. These results suggest that HIV-1-induced changes in gene expression may be achieved through the regulation of methylation. Our study revealed the global m6A methylation and gene expression patterns under HIV-1 infection in human microglia, which might provide clues for understanding the interaction between HIV-1 and host cells and the cognitive disorders caused by HIV-1.

19.
Front Oncol ; 12: 812663, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338737

RESUMO

Background: Hepatocellular carcinoma (HCC) is one of the most leading causes of cancer death worldwide. The 5-year survival rate of HCC patients remains low due to the lack of early-stage symptoms. Human complement factor H-related protein 4 (CFHR4) is a critical gene that belongs to the factor H family of plasma glycoproteins, which has not been linked to HCC development. The correlations between CFHR4 and prognosis and tumor-infiltrating lymphocytes in HCC are yet unknown. The present study demonstrated the involvement of CFHR4 in HCC via data mining approaches. Results: A total of 18 upregulated and 67 down-regulated differentially expressed genes (DEGs) were identified. Importantly, CFHR4, which was screened from DEGs, was shown to express at a lower level in HCC tumor tissue than normal tissues. Western blotting (WB), immunohistochemical (IHC) and quantitative reverse transcription PCR (qRT-PCR) experiments of clinical samples further validated CFHR4 was aberrantly expressed in HCC patients; Data from TCGA showed that CFHR4 was inversely correlated with a cancer family history, histological grade, tumor node metastasis (TNM) stage, and serum AFP level of HCC patients; Univariate and multivariate analyses revealed that low expression of CFHR4 was an independent predictive marker in patients with HCC; Kaplan-Meier analysis showed that the lower expression of CFHR4 was significantly associated with the progression of HCC and poor prognosis rates. Furthermore, TIMER analysis indicated that CFHR4 expression levels had correlations with infiltrating levels of immune cells in HCC. Conclusion: CFHR4 expression was low in HCC and was significantly related to the poor prognosis of HCC and the level of immune infiltration. CFHR4 played important roles in regulating the initiation and progression of HCC and could be a potential biomarker for the diagnosis and prognosis of HCC. Methods: The expression of CFHR4 was analyzed by GEO and TCGA-LIHC database and verified by WB and IHC assay. The biological function of CFHR4 was performed by GO and KEGG enrichment analysis, and the genomic alteration of CFHR4 was investigated by cBioPortal database.The correlation between CFHR4 expression and clinical relevance was evaluated through Cox proportional hazards model, and the correlation between CFHR4 expression and tumor immune infiltrates were studied by TIMER database.

20.
Front Chem ; 10: 841151, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372278

RESUMO

A class of iodobenzoyldiazenido-functionalized POMs (TBA)3 [Mo6O18(=N=NCOAr)] (Ar = Ph-o-I (1); Ph-m-I (2); Ph-p-I (3); Ph-3,4-I2 (4); Ph-2,3,5-I3 (5) (TBA = tetrabutylammonium) were prepared via the refluxing reaction of α-octamolybdates, DCC, and corresponding hydrazides in dry acetonitrile. Their structures were determined by Fourier-transform infrared spectroscopy, ultraviolet-visible spectra, X-ray photoelectron spectroscopy, hydrogen-1 nuclear magnetic resonance, and high-resolution mass spectrometry. Research on the biological activity of title compounds shows that L3, L5, 3, and 5 demonstrate potent inhibitory activity against coxsackievirus B3 and low in vitro cytotoxic activity against Hep-2 cell lines. The covalent linkage between the iodobenzoyldiazenido components and POMs can enhance the molecular inhibitory efficiency of iodobenzohydrazides.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA