Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 321(2): C330-C342, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34191625

RESUMO

Muscle stem cells (MuSCs) are essential for the robust regenerative capacity of skeletal muscle. However, in fibrotic environments marked by abundant collagen and altered collagen organization, the regenerative capability of MuSCs is diminished. MuSCs are sensitive to their extracellular matrix environment but their response to collagen architecture is largely unknown. The present study aimed to systematically test the effect of underlying collagen structures on MuSC functions. Collagen hydrogels were engineered with varied architectures: collagen concentration, cross linking, fibril size, and fibril alignment, and the changes were validated with second harmonic generation imaging and rheology. Proliferation and differentiation responses of primary mouse MuSCs and immortal myoblasts (C2C12s) were assessed using EdU assays and immunolabeling skeletal muscle myosin expression, respectively. Changing collagen concentration and the corresponding hydrogel stiffness did not have a significant influence on MuSC proliferation or differentiation. However, MuSC differentiation on atelocollagen gels, which do not form mature pyridinoline cross links, was increased compared with the cross-linked control. In addition, MuSCs and C2C12 myoblasts showed greater differentiation on gels with smaller collagen fibrils. Proliferation rates of C2C12 myoblasts were also higher on gels with smaller collagen fibrils, whereas MuSCs did not show a significant difference. Surprisingly, collagen alignment did not have significant effects on muscle progenitor function. This study demonstrates that MuSCs are capable of sensing their underlying extracellular matrix (ECM) structures and enhancing differentiation on substrates with less collagen cross linking or smaller collagen fibrils. Thus, in fibrotic muscle, targeting cross linking and fibril size rather than collagen expression may more effectively support MuSC-based regeneration.


Assuntos
Diferenciação Celular/fisiologia , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Miócitos Cardíacos/citologia , Animais , Matriz Extracelular/metabolismo , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Doenças Musculares/metabolismo , Miócitos Cardíacos/metabolismo , Regeneração/fisiologia
2.
J Nat Prod ; 84(4): 1306-1315, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33724827

RESUMO

Five new diterpenes, including four new hydroazulenes, (8R,11R)-8,11-diacetoxypachydictyol A (1), (8R*,11R*)-6-O-acetyl-8-acetoxy-11-hydroxypachydictyol A (2), (8R*,11S*)-8-acetoxy-11-hydroxypachydictyol A (3), and (8R*,11S*)-6-O-acetyl-8,11-dihydroxypachydictyol A (4), and a secohydroazulene derivative, named 7Z-7,8-seco-7,11-didehydro-8- acetoxypachydictyol A (5), were isolated from a South China Sea collection of a Dictyota sp. nov. brown alga, together with five known analogues (6-10). Structure elucidation was achieved by extensive spectroscopic analysis and comparison with reported data. All compounds showed potent antioxidant effects against H2O2-induced oxidative damage in neuron-like PC12 cells at a low concentration of 2 µM. The antioxidant property of dictyol C (9) was associated with activation of the Nrf2/ARE signaling pathway; it also showed neuroprotective effects against cerebral ischemia-reperfusion injury (CIRI) in a rat model of transient middle cerebral artery occlusion. As such, hydroazulene diterpenes could serve as lead structures for the development of novel neuroprotective agents against CIRI.


Assuntos
Antioxidantes/farmacologia , Diterpenos/farmacologia , Fármacos Neuroprotetores/farmacologia , Phaeophyceae/química , Traumatismo por Reperfusão/tratamento farmacológico , Animais , China , Masculino , Estrutura Molecular , Estresse Oxidativo/efeitos dos fármacos , Células PC12 , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
3.
Bioorg Chem ; 114: 105080, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34225164

RESUMO

Antioxidants with high efficacy and low toxicity have the potential to treat cerebral ischemia reperfusion injury (CIRI). Dienone monocarbonyl curcumin analogs (DMCA) capable of overcoming the instability and pharmacokinetic defects of curcumin possess notable antioxidant activity but are found to be significantly toxic. In this study, a novel skeleton of the monoenone monocarbonyl curcumin analogue sAc possessing reduced toxicity and improved stability was designed on the basis of the DMCA skeleton. Moreover, 32 sAc analogs were obtained by applying a green, simple, and economical synthetic method. Multiple sAc analogs with an antioxidant protective effect in PC12 cells were screened using an H2O2-induced oxidative stress damage model, and quantitative evaluation of structure-activity relationship (QSAR) model with regression coefficient of R2 = 0.918921 was built through random forest algorithm (RF). Among these compounds, the optimally active compound sAc15 elicited a potent protective effect on cell growth of PC12 cells by effectively eliminating ROS generation in response to oxidative stress injury by activating the Nrf2/HO-1 antioxidant signaling pathway. In addition, sAc15 exhibited good protection against CIRI in the mice middle cerebral artery occlusion (MCAO) model. In this paper, we provide a novel class of antioxidants and a potential compound for stroke treatment.


Assuntos
Antioxidantes/farmacologia , Curcumina/farmacologia , Química Verde , Infarto da Artéria Cerebral Média/tratamento farmacológico , Substâncias Protetoras/farmacologia , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Antioxidantes/síntese química , Antioxidantes/química , Células Cultivadas , Curcumina/análogos & derivados , Curcumina/química , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Infarto da Artéria Cerebral Média/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Estresse Oxidativo/efeitos dos fármacos , Células PC12 , Substâncias Protetoras/síntese química , Substâncias Protetoras/química , Ratos , Traumatismo por Reperfusão/patologia , Relação Estrutura-Atividade
4.
Sci Rep ; 12(1): 13582, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35945422

RESUMO

Fibro-adipogenic progenitors (FAPs) are essential in supporting regeneration in skeletal muscle, but in muscle pathologies FAPs the are main source of excess extracellular matrix (ECM) resulting in fibrosis. Fibrotic ECM has altered mechanical and architectural properties, but the feedback onto FAPs of stiffness or ECM properties is largely unknown. In this study, FAPs' sensitivity to their ECM substrate was assessed using collagen coated polyacrylamide to control substrate stiffness and collagen hydrogels to engineer concentration, crosslinking, fibril size, and alignment. FAPs on substrates of fibrotic stiffnesses had increased myofibroblast activation, depicted by αSMA expression, compared to substrates mimicking healthy muscle, which correlated strongly YAP nuclear localization. Surprisingly, fibrosis associated collagen crosslinking and larger fibril size inhibited myofibroblast activation, which was independent of YAP localization. Additionally, collagen crosslinking and larger fibril diameters were associated with decreased remodeling of the collagenous substrate as measured by second harmonic generation imaging. Inhibition of YAP activity through verteporfin reduced myofibroblast activation on stiff substrates but not substrates with altered architecture. This study is the first to demonstrate that fibrotic muscle stiffness can elicit FAP activation to myofibroblasts through YAP signaling. However, fibrotic collagen architecture actually inhibits myofibroblast activation through a YAP independent mechanism. These data expand knowledge of FAPs sensitivity to ECM and illuminate targets to block FAP's from driving progression of muscle fibrosis.


Assuntos
Adipogenia , Miofibroblastos , Diferenciação Celular , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Fibrose , Humanos , Músculo Esquelético/metabolismo , Miofibroblastos/patologia
5.
PLoS One ; 17(10): e0271776, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36302059

RESUMO

In Duchenne muscular dystrophy (DMD), a lack of functional dystrophin leads to myofiber instability and progressive muscle damage that results in fibrosis. While fibrosis is primarily characterized by an accumulation of extracellular matrix (ECM) components, there are changes in ECM architecture during fibrosis that relate more closely to functional muscle stiffness. One of these architectural changes in dystrophic muscle is collagen cross-linking, which has been shown to increase the passive muscle stiffness in models of fibrosis including the mdx mouse, a model of DMD. We tested whether the intraperitoneal injections of beta-aminopropionitrile (BAPN), an inhibitor of the cross-linking enzyme lysyl oxidase, would reduce collagen cross-linking and passive stiffness in young and adult mdx mice compared to saline-injected controls. We found no significant differences between BAPN treated and saline treated mice in collagen cross-linking and stiffness parameters. However, we observed that while collagen cross-linking and passive stiffness scaled positively in dystrophic muscles, collagen fiber alignment scaled with passive stiffness distinctly between muscles. We also observed that the dystrophic diaphragm showed the most dramatic fibrosis in terms of collagen content, cross-linking, and stiffness. Overall, we show that while BAPN was not effective at reducing collagen cross-linking, the positive association between collagen cross-linking and stiffness in dystrophic muscles still show cross-linking as a viable target for reducing passive muscle stiffness in DMD or other fibrotic muscle conditions.


Assuntos
Distrofia Muscular de Duchenne , Proteína-Lisina 6-Oxidase , Animais , Camundongos , Aminopropionitrilo/farmacologia , Colágeno , Modelos Animais de Doenças , Fibrose , Camundongos Endogâmicos mdx , Músculo Esquelético/fisiologia , Proteína-Lisina 6-Oxidase/antagonistas & inibidores
6.
ACS Chem Neurosci ; 10(11): 4545-4557, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31491086

RESUMO

The supplementation of exogenous antioxidants to scavenge excessive reactive oxygen species (ROS) is an effective treatment for cerebral ischemia-reperfusion injury (CIRI) in stroke. Piperlongumine (PL), a natural alkaloid, has a great potential as a neuroprotective agent, but it also has obvious toxicity. Moreover, its neuroprotective effects remain to be improved. In this study, we designed a series of novel PL analogs by hybridizing the screened low-toxicity diketene skeleton with antioxidant effect and the 3,4,5-trimethoxyphenyl group, which may increase the antioxidant activity of PL. The intermediate was synthesized by a novel green synthesis method, and 34 compounds were obtained. The compounds without obvious cytotoxicity have remarkable antioxidant effects, especially compared with diketene skeletons and PL. The cytoprotection of the active compound decreased significantly by reduction of the carbon-carbon double bonds of the Michael acceptor in the diketene skeleton. More importantly, further study revealed that compound A9, which has the best activity, can confer protection for cells against oxidative stress and attenuate brain injury in vivo. Overall, this study provided a promising drug candidate for the treatment of CIRI and guided the further development of drug research in oxidative stress-mediated diseases.


Assuntos
Antioxidantes/síntese química , Isquemia Encefálica/tratamento farmacológico , Dioxolanos/síntese química , Desenho de Fármacos , Química Verde/métodos , Traumatismo por Reperfusão/tratamento farmacológico , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Isquemia Encefálica/metabolismo , Sobrevivência Celular , Dioxolanos/farmacologia , Dioxolanos/uso terapêutico , Masculino , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Células PC12 , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Traumatismo por Reperfusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA