Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 20(6): e1012208, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38900844

RESUMO

The apicomplexan intracellular parasite Toxoplasma gondii is a major food borne pathogen that is highly prevalent in the global population. The majority of the T. gondii proteome remains uncharacterized and the organization of proteins into complexes is unclear. To overcome this knowledge gap, we used a biochemical fractionation strategy to predict interactions by correlation profiling. To overcome the deficit of high-quality training data in non-model organisms, we complemented a supervised machine learning strategy, with an unsupervised approach, based on similarity network fusion. The resulting combined high confidence network, ToxoNet, comprises 2,063 interactions connecting 652 proteins. Clustering identifies 93 protein complexes. We identified clusters enriched in mitochondrial machinery that include previously uncharacterized proteins that likely represent novel adaptations to oxidative phosphorylation. Furthermore, complexes enriched in proteins localized to secretory organelles and the inner membrane complex, predict additional novel components representing novel targets for detailed functional characterization. We present ToxoNet as a publicly available resource with the expectation that it will help drive future hypotheses within the research community.


Assuntos
Mapas de Interação de Proteínas , Proteínas de Protozoários , Toxoplasma , Toxoplasma/metabolismo , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/química , Mapas de Interação de Proteínas/fisiologia , Biologia Computacional , Mapeamento de Interação de Proteínas/métodos , Proteoma/metabolismo , Bases de Dados de Proteínas , Aprendizado de Máquina , Análise por Conglomerados
2.
Nat Methods ; 16(8): 737-742, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31308550

RESUMO

Protein complexes are key macromolecular machines of the cell, but their description remains incomplete. We and others previously reported an experimental strategy for global characterization of native protein assemblies based on chromatographic fractionation of biological extracts coupled to precision mass spectrometry analysis (chromatographic fractionation-mass spectrometry, CF-MS), but the resulting data are challenging to process and interpret. Here, we describe EPIC (elution profile-based inference of complexes), a software toolkit for automated scoring of large-scale CF-MS data to define high-confidence multi-component macromolecules from diverse biological specimens. As a case study, we used EPIC to map the global interactome of Caenorhabditis elegans, defining 612 putative worm protein complexes linked to diverse biological processes. These included novel subunits and assemblies unique to nematodes that we validated using orthogonal methods. The open source EPIC software is freely available as a Jupyter notebook packaged in a Docker container (https://hub.docker.com/r/baderlab/bio-epic/).


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Complexos Multiproteicos/isolamento & purificação , Complexos Multiproteicos/metabolismo , Mapeamento de Interação de Proteínas , Proteoma/análise , Software , Animais , Proteínas de Caenorhabditis elegans/isolamento & purificação
3.
Environ Sci Technol ; 50(20): 11329-11336, 2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-27682841

RESUMO

Determination of the physical interactions of environmental chemicals with cellular proteins is important for characterizing biological and toxic mechanism of action. Yet despite the discovery of numerous bioactive natural brominated compounds, such as hydroxylated polybrominated diphenyl ethers (OH-PBDEs), their corresponding protein targets remain largely unclear. Here, we reported a systematic and unbiased chemical proteomics assay (Target Identification by Ligand Stabilization, TILS) for target identification of bioactive molecules based on monitoring ligand-induced thermal stabilization. We first validated the broad applicability of this approach by identifying both known and unexpected proteins bound by diverse compounds (anticancer drugs, antibiotics). We then applied TILS to identify the bacterial target of 6-OH-BDE-47 as enoyl-acyl carrier protein reductase (FabI), an essential and widely conserved enzyme. Using affinity pull-down and in vitro enzymatic assays, we confirmed the potent antibacterial activity of 6-OH-BDE-47 occurs via direct binding and inhibition of FabI. Conversely, overexpression of FabI rescued the growth inhibition of Escherichia coli by 6-OH-BDE-47, validating it as the primary in vivo target. This study documents a chemical proteomics strategy for identifying the physical and functional targets of small molecules, and its potential high-throughput application to investigate the modes-of-action of environmental compounds.

4.
bioRxiv ; 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37873470

RESUMO

The Mechanism of Action (MoA) of a drug is generally represented as a small, non-tissue-specific repertoire of high-affinity binding targets. Yet, drug activity and polypharmacology are increasingly associated with a broad range of off-target and tissue-specific effector proteins. To address this challenge, we have implemented an efficient integrative experimental and computational framework leveraging the systematic generation and analysis of drug perturbational profiles representing >700 FDA-approved and experimental oncology drugs, in cell lines selected as high-fidelity models of 23 aggressive tumor subtypes. Protein activity-based analyses revealed highly reproducible, drug-mediated modulation of tissue-specific targets, leading to generation of a proteome-wide polypharmacology map, characterization of MoA-related drug clusters and off-target effects, and identification and experimental validation of novel, tissue-specific inhibitors of undruggable oncoproteins. The proposed framework, which is easily extended to elucidating the MoA of novel small-molecule libraries, could help support more systematic and quantitative approaches to precision oncology.

5.
Genomics Proteomics Bioinformatics ; 20(4): 715-727, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33636367

RESUMO

Synechocystis sp. PCC 6803 (hereafter: Synechocystis) is a model organism for studying photosynthesis, energy metabolism, and environmental stress. Although known as the first fully sequenced phototrophic organism, Synechocystis still has almost half of its proteome without functional annotations. In this study, by using co-fractionation coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS), we define 291 multi-protein complexes, encompassing 24,092 protein-protein interactions (PPIs) among 2062 distinct gene products. This information not only reveals the roles of photosynthesis in metabolism, cell motility, DNA repair, cell division, and other physiological processes, but also shows how protein functions vary from bacteria to higher plants due to changes in interaction partners. It also allows us to uncover the functions of hypothetical proteins, such as Sll0445, Sll0446, and Sll0447 involved in photosynthesis and cell motility, and Sll1334 involved in regulation of fatty acid biogenesis. Here we present the most extensive PPI data for Synechocystis so far, which provide critical insights into fundamental molecular mechanisms in cyanobacteria.


Assuntos
Synechocystis , Synechocystis/genética , Cromatografia Líquida , Proteínas de Bactérias/química , Espectrometria de Massas em Tandem , Fotossíntese
6.
Cell Syst ; 10(4): 333-350.e14, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32325033

RESUMO

Connectivity webs mediate the unique biology of the mammalian brain. Yet, while cell circuit maps are increasingly available, knowledge of their underlying molecular networks remains limited. Here, we applied multi-dimensional biochemical fractionation with mass spectrometry and machine learning to survey endogenous macromolecules across the adult mouse brain. We defined a global "interactome" comprising over one thousand multi-protein complexes. These include hundreds of brain-selective assemblies that have distinct physical and functional attributes, show regional and cell-type specificity, and have links to core neurological processes and disorders. Using reciprocal pull-downs and a transgenic model, we validated a putative 28-member RNA-binding protein complex associated with amyotrophic lateral sclerosis, suggesting a coordinated function in alternative splicing in disease progression. This brain interaction map (BraInMap) resource facilitates mechanistic exploration of the unique molecular machinery driving core cellular processes of the central nervous system. It is publicly available and can be explored here https://www.bu.edu/dbin/cnsb/mousebrain/.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/metabolismo , Conectoma/métodos , Esclerose Lateral Amiotrófica/metabolismo , Animais , Proteínas de Ligação a DNA/genética , Aprendizado de Máquina , Mamíferos/fisiologia , Espectrometria de Massas/métodos , Camundongos , Mutação/genética
7.
Methods Mol Biol ; 1764: 391-399, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29605929

RESUMO

Biology has amassed a wealth of information about the function of a multitude of protein-coding genes across species. The challenge now is to understand how all these proteins work together to form a living organism, and a crucial step for gaining this knowledge is a complete description of the molecular "wiring circuits" that underlie cellular processes. In this chapter, we describe a general computational framework for predicting multi-protein assemblies from biochemical co-fractionation data.


Assuntos
Biologia Computacional/métodos , Processamento Eletrônico de Dados/métodos , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas/isolamento & purificação , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA