Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(32): 14548-14554, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35917450

RESUMO

We report here the direct hydrogenation of O2 gas to form hydrogen peroxide (H2O2) using a membrane reactor without H2 gas. Hydrogen is sourced from water, and the reactor is driven by electricity. Hydrogenation chemistry is achieved using a hydrogen-permeable Pd foil that separates an electrolysis chamber that generates reactive H atoms, from a hydrogenation chamber where H atoms react with O2 to form H2O2. Our results show that the concentration of H2O2 can be increased ∼8 times (from 56.5 to 443 mg/L) by optimizing the ratio of methanol-to-water in the chemical chamber, and through catalyst design. We demonstrate that the concentration of H2O2 is acutely sensitive to the H2O2 decomposition rate. This decomposition rate can be minimized by using AuPd alloy catalysts instead of pure Pd. This study presents a new pathway to directly synthesize H2O2 using water electrolysis without ever using H2 gas.

2.
Angew Chem Int Ed Engl ; 60(21): 11937-11942, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33851491

RESUMO

An electrocatalytic palladium membrane reactor (ePMR) uses electricity and water to drive hydrogenation without H2 gas. The device contains a palladium membrane to physically separate the formation of reactive hydrogen atoms from hydrogenation of the unsaturated organic substrate. This separation provides an opportunity to independently measure the hydrogenation reaction at a surface without any competing H2 activation or proton reduction chemistry. We took advantage of this feature to test how different metal catalysts coated on the palladium membrane affect the rates of hydrogenation of C=O and C=C bonds. Hydrogenation occurs at the secondary metal catalyst and not the underlying palladium membrane. These secondary catalysts also serve to accelerate the reaction and draw a higher flux of hydrogen through the membrane. These results reveal insights into hydrogenation chemistry that would be challenging using thermal or electrochemical hydrogenation experiments.

3.
Acc Chem Res ; 51(4): 910-918, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29569896

RESUMO

Electrocatalytic CO2 conversion at near ambient temperatures and pressures offers a potential means of converting waste greenhouse gases into fuels or commodity chemicals (e.g., CO, formic acid, methanol, ethylene, alkanes, and alcohols). This process is particularly compelling when driven by excess renewable electricity because the consequent production of solar fuels would lead to a closing of the carbon cycle. However, such a technology is not currently commercially available. While CO2 electrolysis in H-cells is widely used for screening electrocatalysts, these experiments generally do not effectively report on how CO2 electrocatalysts behave in flow reactors that are more relevant to a scalable CO2 electrolyzer system. Flow reactors also offer more control over reagent delivery, which includes enabling the use of a gaseous CO2 feed to the cathode of the cell. This setup provides a platform for generating much higher current densities ( J) by reducing the mass transport issues inherent to the H-cells. In this Account, we examine some of the systems-level strategies that have been applied in an effort to tailor flow reactor components to improve electrocatalytic reduction. Flow reactors that have been utilized in CO2 electrolysis schemes can be categorized into two primary architectures: Membrane-based flow cells and microfluidic reactors. Each invoke different dynamic mechanisms for the delivery of gaseous CO2 to electrocatalytic sites, and both have been demonstrated to achieve high current densities ( J > 200 mA cm-2) for CO2 reduction. One strategy common to both reactor architectures for improving J is the delivery of CO2 to the cathode in the gas phase rather than dissolved in a liquid electrolyte. This physical facet also presents a number of challenges that go beyond the nature of the electrocatalyst, and we scrutinize how the judicious selection and modification of certain components in microfluidic and/or membrane-based reactors can have a profound effect on electrocatalytic performance. In membrane-based flow cells, for example, the choice of either a cation exchange membrane (CEM), anion exchange membrane (AEM), or a bipolar membrane (BPM) affects the kinetics of ion transport pathways and the range of applicable electrolyte conditions. In microfluidic cells, extensive studies have been performed upon the properties of porous carbon gas diffusion layers, materials that are equally relevant to membrane reactors. A theme that is pervasive throughout our analyses is the challenges associated with precise and controlled water management in gas phase CO2 electrolyzers, and we highlight studies that demonstrate the importance of maintaining adequate flow cell hydration to achieve sustained electrolysis.

4.
Inorg Chem ; 57(23): 14624-14631, 2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30422643

RESUMO

We demonstrate herein a CO2 reduction electrocatalyst regeneration strategy based on the manipulation of the Cu(0)/Cu2+ equilibrium with high concentrations of ethylenediaminetetraacetic acid (EDTA). This strategy enables the sustained performance of copper catalysts in distilled and tap water electrolytes for over 12 h. The deposition of common electrolyte impurities such as iron, nickel, and zinc is blocked because EDTA can effectively bind the metal ions and negatively shift the electrode potential of M/M n+. The Cu/Cu2+ redox couple is >600 mV more positive than the other metal ions and therefore participates in an equilibrium of dissolution and redeposition from and to the electrode in high concentrations of EDTA. These dynamic equilibria serve to further regenerate the surface copper catalyst to prevent the deactivation of catalytic sites. On the basis of this strategy, we show that >95% of initial hydrocarbon production activity can be maintained for 12 h in KHCO3 (99% purity) enriched distilled water and 6 h in KHCO3 (99% purity) enriched tap water.

5.
J Am Chem Soc ; 139(50): 18174-18177, 2017 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-29215268

RESUMO

UV light is found to trigger the decomposition of MClx or M(NO3)x (where M = Fe, Co, Ni, Cu, or Zn) to form uniform, amorphous films of metal oxides. This process does not elevate the temperature of the substrate and thus conformal films can be coated on a range of substrates, including rigid glass and flexible plastic. The formation of the oxide films were confirmed by a combination of powder X-ray diffraction, X-ray photoelectron spectroscopy, X-ray fluorescence spectroscopy, Fourier transform infrared spectroscopy and scanning electron microscopy techniques. Amorphous oxide films of iron, nickel and a combination of iron and nickel demonstrated oxygen evolution reaction electrocatalytic activities commensurate with films of the same compositions prepared by widely used electrodeposition and sputtering methods. These results illuminate a potential route to amorphous oxides at scale using simple metal precursors without vacuum or heat.

6.
Angew Chem Int Ed Engl ; 56(52): 16579-16582, 2017 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-29193586

RESUMO

Electrochemically reducing CO2 into fuels using renewable electricity is a contemporary global challenge that requires significant advances in catalyst design. Photodeposition techniques were used to screen ternary alloys of Cu-Zn-Sn, which includes brass and bronze, for the electrocatalytic reduction of CO2 to CO and formate. This analysis identified Cu0.2 Zn0.4 Sn0.4 and Cu0.2 Sn0.8 to be capable of reaching Faradaic efficiencies of >80 % for CO and formate formation, respectively, and capable of achieving partial current densities of 3 mA cm-2 at an overpotential of merely 200 mV.

7.
Nat Commun ; 15(1): 766, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38278793

RESUMO

Industrial hydrogen peroxide (H2O2) is synthesized using carbon-intensive H2 gas production and purification, anthraquinone hydrogenation, and anthrahydroquinone oxidation. Electrochemical hydrogenation (ECH) of anthraquinones offers a carbon-neutral alternative for generating H2O2 using renewable electricity and water instead of H2 gas. However, the H2O2 formation rates associated with ECH are too low for commercialization. We report here that a membrane reactor enabled us to electrochemically hydrogenate anthraquinone (0.25 molar) with a current efficiency of 70% at current densities of 100 milliamperes per square centimeter. We also demonstrate continuous H2O2 synthesis from the hydrogenated anthraquinones over the course of 48 h. This study presents a fast rate of electrochemically-driven anthraquinone hydrogenation (1.32 ± 0.14 millimoles per hour normalized per centimeter squared of geometric surface of electrode), and provides a pathway toward carbon-neutral H2O2 synthesis.

8.
ACS Cent Sci ; 8(6): 749-755, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35756379

RESUMO

Electrolyzers are now capable of reducing carbon dioxide (CO2) into products at high reaction rates but are often characterized by low energy efficiencies and low CO2 utilization efficiencies. We report here an electrolyzer that reduces 3.0 M KHCO3(aq) into CO(g) at a high rate (partial current density for CO of 220 mA cm-2) and a CO2 utilization efficiency of 40%, at a voltage of merely 2.3 V. These results were made possible by using: (i) a reactive carbon solution enriched in KHCO3 as the feedstock instead of gaseous CO2; (ii) a cation exchange membrane instead of an anion exchange membrane, which is common to the field; and (iii) the hydrogen oxidation reaction (HOR) at the anode instead of the oxygen evolution reaction (OER). The voltage reported here is the lowest reported for any CO2 to CO electrolyzer that operates at high current densities (i.e., a partial current density for CO greater than 200 mA cm-2) with a CO2 utilization efficiency of greater than 20%. This study highlights how the choice of feedstock, membrane, and anode chemistries affects the rate and efficiency at which CO2 is converted into products.

9.
JACS Au ; 1(3): 336-343, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-34467297

RESUMO

For common hydrogenation chemistries that occur at high temperatures (where H2 is adsorbed and activated at the same surface which the substrate must also adsorb for reaction), there is often little consensus on how the reactions (e.g., hydro(deoxy)genation) actually occur. We demonstrate here that an electrocatalytic palladium membrane reactor (ePMR) can be used to study hydrogenation reaction mechanisms at ambient temperatures, where the catalyst does not necessarily undergo structural reorganization. The ePMR uses electrolysis and a hydrogen-selective palladium membrane to deliver reactive hydrogen to a catalyst surface in an adjacent compartment for reaction with an organic substrate. This process forms the requisite metal-hydride surface for hydrogenation chemistry, but at ambient temperature and pressure, and without a H2 source. We demonstrate the utility of this analytical tool by studying the hydrogenation of benzaldehyde at palladium nanocubes with dimensions of 13-24 nm. This experimental design enabled us to resolve that the alcohol product forms at the facial sites, whereas the hydrodeoxygenation step occurs at edge sites. These observations enabled us to develop the first site-specific definition of how a carbonyl species undergoes hydro(deoxy)genation.

10.
ChemSusChem ; 11(1): 48-57, 2018 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29205925

RESUMO

Electrochemically reducing CO2 using renewable energy is a contemporary global challenge that will only be met with electrocatalysts capable of efficiently converting CO2 into fuels and chemicals with high selectivity. Although many different metals and morphologies have been tested for CO2 electrocatalysis over the last several decades, relatively limited attention has been committed to the study of alloys for this application. Alloying is a promising method to tailor the geometric and electric environments of active sites. The parameter space for discovering new alloys for CO2 electrocatalysis is particularly large because of the myriad products that can be formed during CO2 reduction. In this Minireview, mixed-metal electrocatalyst compositions that have been evaluated for CO2 reduction are summarized. A distillation of the structure-property relationships gleaned from this survey are intended to help in the construction of guidelines for discovering new classes of alloys for the CO2 reduction reaction.


Assuntos
Dióxido de Carbono/química , Técnicas Eletroquímicas/métodos , Ligas/química , Catálise , Metais/química , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA