Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(8)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924024

RESUMO

Healthcare is now an important part of daily life because of rising consciousness of health management. Medical professionals can know users' health condition if they are able to access information immediately. Telemedicine systems, which provides long distance medical communication and services, is a multi-functional remote medical service that can help patients in bed in long-distance communication environments. As telemedicine systems work in public networks, privacy preservation issue of sensitive and private transmitted information is important. One of the means of proving a user's identity are user-controlled single sign-on (UCSSO) authentication scheme, which can establish a secure communication channel using authenticated session keys between the users and servers of telemedicine systems, without threats of eavesdropping, impersonation, etc., and allow patients access to multiple telemedicine services with a pair of identity and password. In this paper, we proposed a smartcard-based user-controlled single sign-on (SC-UCSSO) for telemedicine systems that not only remains above merits but achieves privacy preservation and enhances security and performance compared to previous schemes that were proved with BAN logic and automated validation of internet security protocols and applications (AVISPA).


Assuntos
Privacidade , Telemedicina , Comunicação , Segurança Computacional , Confidencialidade , Humanos , Sistemas de Informação
2.
Anal Chem ; 89(6): 3278-3284, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28211678

RESUMO

Protein tyrosine sulfation (PTS) is a widespread posttranslational modification that induces intercellular and extracellular responses by regulating protein-protein interactions and enzymatic activity. Although PTS affects numerous physiological and pathological processes, only a small fraction of the total predicted sulfated proteins has been identified to date. Here, we localized the potential sulfation sites of Escherichia coli proteins on a proteome microarray by using a 3'-phosphoadenosine 5'-phosphosulfate (PAPS) synthase-coupled tyrosylprotein sulfotransferase (TPST) catalysis system that involves in situ PAPS generation and TPST catalysis. Among the 4256 E. coli K12 proteins, 875 sulfated proteins were identified using antisulfotyrosine primary and Cy3-labeled antimouse secondary antibodies. Our findings add considerably to the list of potential proteins subjected to tyrosine sulfation. Similar procedures can be applied to identify sulfated proteins in yeast and human proteome microarrays, and we expect such approaches to contribute substantially to the understanding of important human diseases.


Assuntos
Proteínas de Escherichia coli/análise , Proteínas de Escherichia coli/química , Ensaios de Triagem em Larga Escala , Análise Serial de Proteínas , Proteoma , Tirosina/análogos & derivados , Animais , Drosophila melanogaster/enzimologia , Escherichia coli K12 , Proteínas de Escherichia coli/genética , Humanos , Complexos Multienzimáticos/isolamento & purificação , Complexos Multienzimáticos/metabolismo , Sulfato Adenililtransferase/isolamento & purificação , Sulfato Adenililtransferase/metabolismo , Sulfotransferases/isolamento & purificação , Sulfotransferases/metabolismo , Tirosina/química
3.
J Econ Entomol ; 116(3): 983-992, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37120154

RESUMO

The fall armyworm (FAW) Spodoptera frugiperda was first found in China in 2018. In other countries, FAW has evolved corn and rice strain biotypes. It is not possible to identify these strains based on morphology. In addition, FAW is very similar in appearance to several other common pests. These situations bring great challenges to the population management of FAW. In this study, we developed a rapid identification method based on PCR-RFLP to distinguish the two FAW strains and the FAW from other lepidopteran pests. A 697 bp mitochondrial cytochrome c oxidase I (COI) was cloned and sequenced from FAW, Spodoptera litura, Spodoptera exigua, and Mythimna separata. The COI fragments of these species revealed unique digestion patterns created by three enzymes (Tail, AlWN I, and BstY II). Thus, these four species can be distinguished from each other. The enzyme Ban I recognized a unique SNP site on a 638 bp triosephosphate isomerase (Tpi) fragment of the corn strain FAW. The Tpi fragment of the corn strain was cut into two bands. However, the rice strain could not be digested. Using this method, all 28 FAW samples collected from different host plants and locations in China were identified as the corn strain. This suggests that the rice strain has not yet invaded China. This method allows discrimination of FAW from other Lepidopteran pests and distinguishes the two FAW host strains.


Assuntos
Oryza , Zea mays , Animais , Spodoptera/genética , Polimorfismo de Fragmento de Restrição , China , Reação em Cadeia da Polimerase , Larva/genética
4.
ACS Appl Mater Interfaces ; 4(12): 6857-64, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23167527

RESUMO

Hybrid organic-silicon heterojunction solar cells promise a significant reduction on fabrication costs by avoiding energy-intensive processes. However, their scalability remains challenging without a low-cost transparent electrode. In this work, we present solution-processed silver-nanowire meshes that uniformly cover the microtextured surface of hybrid heterojunction solar cells to enable efficient carrier collection for large device area. We systematically compare the characteristics and device performance with long and short nanowires with an average length/diameter of 30 µm/115 nm and 15 µm/45 nm, respectively, to those with silver metal grids. A remarkable power conversion efficiency of 10.1% is achieved with a device area of 1 × 1 cm(2) under 100 mW/cm(2) of AM1.5G illumination for the hybrid solar cells employing long wires, which represents an enhancement factor of up to 36.5% compared to the metal grid counterpart. The high-quality nanowire network displays an excellent spatial uniformity of photocurrent generation via distributed nanowire meshes and low dependence on efficient charge transport under a high light-injection condition with increased device area. The capability of silver nanowires as flexible transparent electrodes presents a great opportunity to accelerate the mass deployment of high-efficiency hybrid silicon photovoltaics via simple and rapid soluble processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA