Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Environ Sci Technol ; 58(1): 121-131, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38118121

RESUMO

The COVID-19 pandemic has resulted in huge amounts of face masks worldwide. However, there is a lack of awareness on the additives and their potential risk to aquatic ecosystems of face masks. To address this issue, the additives and their toxicity in 13 face masks (e.g., polypropylene, polyethylene, and polylactic acid) were determined using nontarget analysis and bioassays. A total of 826 organic additives including intermediates (14.8%), surfactants (9.3%), plasticizers (8.2%), and antioxidants (6.1%) were tentatively identified, with 213 compounds being assigned confidence levels of 1 and 2. Interestingly, polylactic acid masks contained more additives than most polypropylene or polyethylene masks. Among these additives, the concentration of tris(2-ethylhexyl) phosphate in masks was 9.4-978.2 ng/g with a 100% detection frequency. Furthermore, 13 metals such as zinc (up to 202.0 µg/g), copper (32.5 µg/g), and chromium (up to 5.7 µg/g) were detected in the face masks. The methanol extracts of the masks showed the developmental toxicity, swimming behavior, and/or endocrine disruption in embryos/larvae of Oryzias melastigma. The findings demonstrate that face masks contain various toxic additives to marine medaka, which deserves close attention to pollution by face masks.


Assuntos
Oryzias , Poluentes Químicos da Água , Animais , Humanos , Ecossistema , Máscaras , Pandemias , Polipropilenos , Polietilenos
2.
Environ Sci Technol ; 57(8): 3280-3290, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36795899

RESUMO

Bisphenol 4-[1-(4-hydroxyphenyl)-3,3,5-trimethylcyclohexyl] phenol (BPTMC), as a substitute for bisphenol A, has been detected in environments. However, the ecotoxicological data of BPTMC are extremely scarce. Here, the lethality, developmental toxicity, locomotor behavior, and estrogenic activity of BPTMC at different concentrations (0.25-2000 µg/L) in marine medaka (Oryzias melastigma) embryos were examined. In addition, the in silico binding potentials of O. melastigma estrogen receptors (omEsrs) with BPTMC were assessed by docking study. Low-concentration BPTMC exposure (including an environmentally relevant concentration, 0.25 µg/L) resulted in stimulating effects, including hatching rate, heart rate, malformation rate, and swimming velocity. However, elevated concentrations of BPTMC led to an inflammatory response, changed heart rate and swimming velocity in the embryos and larvae. In the meantime, BPTMC (including 0.25 µg/L) altered the concentrations of estrogen receptor, vitellogenin, and endogenous 17 ß-estradiol as well as the transcriptional levels of estrogen-responsive genes in the embryos or/and larvae. Furthermore, elaborate tertiary structures of omEsrs were built by ab initio modeling, and BPTMC exerted potent binding potential with three omEsrs with -47.23, -49.23, and -50.30 kJ/mol for Esr1, Esr2a, and Esr2b, respectively. This work suggests that BPTMC has potent toxicity and estrogenic effects in O. melastigma.


Assuntos
Oryzias , Poluentes Químicos da Água , Animais , Oryzias/fisiologia , Estrona/metabolismo , Estrogênios/metabolismo , Fenóis/toxicidade , Receptores de Estrogênio/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
3.
Ecotoxicol Environ Saf ; 208: 111629, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396149

RESUMO

As an alternative to volatile organic solvents, ionic liquids (ILs) are known as "green solvents", and widely used in industrial applications. However, due to their high solubility and stability, ILs have tendency to persist in the water environment, thus having potential negative impacts on the aquatic ecosystem. For assessing the environmental risks of ILs, a fundamental understanding of the toxic effects and mechanisms of ILs is needed. Here we evaluated the cytotoxicity of 1-methyl-3-decylimidazolium chloride ([C10mim]Cl) and elucidated the main toxic mechanism of [C10mim]Cl in human cervical carcinoma (Hela) cells. Microstructural analysis revealed that [C10mim]Cl exposure caused the cell membrane breakage, swollen and vacuolated mitochondria, and spherical cytoskeletal structure. Cytotoxicity assays found that [C10mim]Cl exposure increased ROS production, decreased mitochondrial membrane potential, induced cell apoptosis and cell cycle arrest. These results indicated that [C10mim]Cl could induce damage to cellular membrane structure, affect the integrity of cell ultrastructure, cause the oxidative damage and ultimately lead to the inhibition of cell proliferation. Moreover, alterations of biochemical information including the increased ratios of unsaturated fatty acid and carbonyl groups to lipid, and lipid to protein, and the decreased ratios of Amide I to Amide II, and α-helix to ß-sheet were observed in [C10mim]Cl treated cells, suggesting that [C10mim]Cl could affect the structure of membrane lipid alkyl chain and cell membrane fluidity, promote the lipid peroxidation and alter the protein secondary structure. The findings from this work demonstrated that membrane structure is the key target, and membrane damage is involved in [C10mim]Cl induced cytotoxicity.


Assuntos
Substâncias Perigosas/toxicidade , Líquidos Iônicos/toxicidade , Membrana Celular/efeitos dos fármacos , Ecossistema , Células HeLa , Humanos , Imidazolinas/toxicidade , Mitocôndrias , Estrutura Secundária de Proteína , Solventes
4.
Ecotoxicol Environ Saf ; 227: 112917, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34678628

RESUMO

Imidacloprid (IMI) and thiamethoxam (THM) are two commonly applied neonicotinoid insecticides. IMI and THM could cause negative impacts on non-target organisms like bees. However, the information about neurotoxicity of IMI and THM in fish is still scarce. Here we investigated the effects of IMI and THM on locomotor behavior, AChE activity, and transcription of genes related to synaptic transmission in zebrafish exposed to IMI and THM with concentrations of 50 ng L-1 to 50,000 ng L-1 at 14 day post fertilization (dpf), 21 dpf, 28 dpf and 35 dpf. Our results showed that IMI and THM significantly influenced the locomotor activity in larvae at 28 dpf and 35 dpf. THM elevated AChE activity at 28 dpf. The qPCR data revealed that IMI and THM affected the transcription of marker genes belonging to the synapse from 14 dpf to 35 dpf. Furthermore, IMI and THM mainly affected transcription of key genes in γ-aminobutyric acid, dopamine and serotonin pathways in larvae at 28 dpf and 35 dpf. These results demonstrated the neurotoxicity of IMI and THM in zebrafish. The findings from this study suggested that IMI and THM in the aquatic environment may pose potential risks to fish fitness and survival.


Assuntos
Inseticidas , Poluentes Químicos da Água , Animais , Abelhas , Inseticidas/análise , Inseticidas/toxicidade , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Transmissão Sináptica , Tiametoxam , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/genética
5.
Ecotoxicol Environ Saf ; 208: 111566, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396095

RESUMO

Androgens and estrogens often co-exist in aquatic environments and pose potential risks to fish populations. However, little is known about the endocrine disrupting effects of the mixture of androgens and estrogens in fish. In this study, transcriptional level of target genes related to the hypothalamic-pituitary-gonadal-liver (HPGL) axis, sex hormone level, VTG protein concentration, histology and secondary sex characteristic were assessed in the ovaries and livers of adult female western mosquitofish (Gambusia affinis) exposed to 17ß-estradiol (E2), testosterone (T), and mixtures of E2 and T for 91 days. The results showed that the transcriptional expression of cytochrome P450, family 19, subfamily A, polypeptide 1a (Cyp19a1a) was suppressed in the 200 ng/L T treatment and the 50 ng/L E2 + 200 ng/L T treatment in the ovaries. Steroidogenic acute regulatory protein (Star) and Cyp11a1 showed a similar expression pattern in the T treatment to its corresponding T + E2 mixtures. In the ovaries, the concentrations of 17ß-estradiol and testosterone were decreased in most treatments compared with the solvent control. VTG protein was induced in all steroid treatment. However, exposure to T or E2 + T mixture did not cause the abnormal cells of the ovaries and livers and an extension of the anal fins in female G. affinis. This study demonstrates that chronic exposure to E2, T and their mixtures affects the transcripts of genes in the HPGL axis, steroid hormone level and VTG protein concentration in the ovaries and livers, but fails to cause the histopathological effect of the ovaries and livers and alter the morphology of the anal fins in G. affinis.


Assuntos
Ciprinodontiformes/fisiologia , Disruptores Endócrinos/toxicidade , Estradiol/toxicidade , Androgênios/metabolismo , Animais , Ciprinodontiformes/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Disruptores Endócrinos/metabolismo , Estradiol/metabolismo , Estrogênios/metabolismo , Feminino , Hormônios Esteroides Gonadais/metabolismo , Fígado/efeitos dos fármacos , Masculino , Ovário/efeitos dos fármacos , Testosterona/metabolismo , Vitelogeninas/metabolismo
6.
Bull Environ Contam Toxicol ; 106(4): 594-599, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33570674

RESUMO

Dydrogesterone (DDG) acts on the reproduction but also affects the functioning of non-reproductive system. So far, the knowledge about other effects of DDG remains limited. Here we investigated the effects of DDG on the transcription of genes in innate immune and coagulation cascade in zebrafish embryos. The zebrafish embryos were exposed to DDG at 49.0, 527 and 5890 ng L- 1 for 144 hour post fertilization (hpf). The results showed that DDG significantly decreased the transcription of marker genes (e.g. tnfa, il8 and cc-chem) involved in the innate immune response at environmental concentrations. Moreover, DDG also down-regulated the transcription of genes in coagulation cascade (e.g. fga, fgb, fgg and f2). These results indicated that DDG had potential effects on the innate immune and coagulation cascade functions in the early life zebrafish, thus further affecting fish growth and health.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Didrogesterona , Embrião não Mamífero , Imunidade Inata , Reprodução
7.
Fish Shellfish Immunol ; 97: 283-293, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31863904

RESUMO

Selenium is an essential element but toxic at high levels in animals. The effects of Se on growth performance and the immune system in Nile tilapia remain inconclusive. In this study, Nile tilapia Oreochromis niloticus was fed on selenium yeast (Se(Y))- and selenite (Se(IV))-enriched feed at 0, 3, 6, and 12 µg/g (dry wt) for 45 and 90 d. The growth, bioaccumulation, biochemical markers related to antioxidant, immunological, nervous and digestive systems were evaluated in various fish tissues (liver, intestine, kidney, muscle, brain, spleen, gills). The results showed that the accumulation of Se(Y) was 1.3-2 folds of Se(IV) in most tissues. The growth of tilapia was enhanced by both Se(Y) and Se(IV) at 3 µg/g after 90 d, with Se(Y) better than Se(IV) in tilapia feed. After 45 d, the levels of lipid peroxidation, the activity of the antioxidant enzymes, and the transcriptional levels of the immune related genes (IL-1ß, IFN-γ and TNF-α) and stress proteins (HSP70 and MT) were enhanced in all treatments, except that of MT in the 12 µg/g Se(Y) group. In addition, both Se species inhibited the activity of acetylcholinesterase (AChE) in the brain and one digestive enzyme α-glucosidase (α-Glu) in the intestine at 12 µg/g. However, after 90 d, the effects on most biochemical markers were less pronounced, implying a possible acclimation after prolonged duration. The results demonstrate Se is beneficial to O. niloticus at low levels and toxic at elevated levels. The immunostimulation by Se might be greatly weakened after long term feeding Se-enriched feed. This study helps to better understand the effects of Se on the antioxidant and immune systems and to establish the optimal Se levels in the feed and duration for O. niloticus.


Assuntos
Antioxidantes/metabolismo , Bioacumulação , Ciclídeos/imunologia , Imunidade Inata/efeitos dos fármacos , Ácido Selenioso/metabolismo , Selênio/metabolismo , Fermento Seco/metabolismo , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Relação Dose-Resposta a Droga , Ácido Selenioso/administração & dosagem , Selênio/administração & dosagem , Fatores de Tempo , Fermento Seco/administração & dosagem
8.
Ecotoxicol Environ Saf ; 193: 110371, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32114246

RESUMO

Medroxyprogesterone acetate (MPA) is a widely used synthetic progestin in contraception pills and hormone replacement therapy. However, its effects on eye growth and development and function were largely unknown. In this study, the transcription of genes in the Notch signaling pathway and the visual cycle network were evaluated after chronic MPA exposure at 4.32 (L), 42.0 (M), and 424 (H) ng L-1 for 120 days in zebrafish. Meanwhile, the histology of the eyes was also examined. Transcriptional results showed that MPA at all three concentrations significantly increased the transcription of notch1a, dll4, jag1a, ctbp1 and rbpjb (key genes in the Notch signaling pathway) in the eyes of females. The up-regulation of noth1a, ctbp1 and kat2b was also observed in the eyes of males exposed to MPA at 424 ng L-1. In the visual cycle pathway, MPA increased the transcription of opn1sw1, opn1sw2, arr3a and rpe65a in the eyes of females from the M and H treatments. Histopathological analysis showed that exposure to 42.0 ng L-1 of MPA increased the thicknesses of inner nuclear layer in females and outer segment in males. Moreover, exposure to 424 ng L-1 of MPA increased the lens diameter in females. These results indicated that chronic MPA exposure affected the transcription of genes in the Notch signaling and in the visual cycle pathways, resulting in overgrowth of the eyes and interference of the eye functions. This study suggests that MPA pose a risk to fitness and survival of zebrafish in areas where MPA contamination exists.


Assuntos
Contraceptivos Hormonais/toxicidade , Olho/efeitos dos fármacos , Acetato de Medroxiprogesterona/toxicidade , Animais , Olho/crescimento & desenvolvimento , Olho/patologia , Feminino , Masculino , Receptores Notch/metabolismo , Retina , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Peixe-Zebra/genética , Peixe-Zebra/crescimento & desenvolvimento , Peixe-Zebra/metabolismo
9.
Environ Sci Technol ; 53(8): 4588-4599, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30905144

RESUMO

Plastic is ingested by over 100 bird species and 40 fish species. Once ingested, plastic may release endocrine-disrupting plastic additives in the animal; however, amounts transferred are poorly characterized. We exposed 16 commonly ingested plastic items to fish and seabird laboratory gut mimic models using the digestive enzyme pepsin at pH 2 and shook them for 16 h at either 28 °C (in saltwater) for fish or 40 °C (in freshwater) for seabirds. Gut liquid was then evaluated for estrogen receptor activity using an in vitro cell line, and plastic-additive concentrations were quantified using ultrahigh-performance liquid chromatography/tandem mass spectrometry. Both seabird ( p < 0.0001) and fish gut conditions ( p < 0.0001) significantly enhanced the biological estrogenicity of expanded polystyrene, polyethylene shopping bag, and polypropylene string relative to controls, resulting in up to a 10.6-fold increase in estrogenicity. Out of 12 plastic additives analyzed, bisphenol A (BPA) (204 ± 129%) and diethylhexyl phthalate (DEHP) (175 ± 97%) concentrations were significantly increased in seabird gut conditions relative to control and butylbenzyl phthalate (BBP) (132 ± 68%) was significantly increased in fish gut conditions relative to control. BPA, DEHP, and BBP did not adequately account for the increase in biological estrogenicity, suggesting that uncharacterized plastic additives may have been enhanced by gut conditions.


Assuntos
Dietilexilftalato , Plásticos , Animais , Ingestão de Alimentos , Estrona , Peixes
10.
Ecotoxicol Environ Saf ; 174: 540-548, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30865910

RESUMO

Natural and synthetic estrogens and progestins are present in the various aquatic environments, leading to potential exposure of aquatic organisms to their mixtures. However, very little is known about their combined effects in aquatic organisms. The aim of this study was to analyze the effects of binary mixtures of estradiol (E2) and progesterone (P4) by measuring transcriptional changes of up to 42 selected target genes related to hypothalamic-pituitary-gonadal axis and circadian rhythm signaling in zebrafish (Danio rerio) eleuthero-embryos. Zebrafish embryos were exposed to E2 and P4 alone or in combination at concentrations between 45 and 5217 ng L-1 for 96 h post fertilization (hpf). The results showed that P4 led to slight up-regulation of the cyp11a1, hsd17b3 and fshb transcripts, while a strong induction of cyp19a1b and lhb mRNA by E2 was observed. Also, cyp19a1b and lhb mRNAs expression were strongly up-regulated in the mixtures, which were the same to E2 alone. This finding suggests the mixture activity of E2 and P4 followed the independent action in zebrafish eleuthero-embryos. These transcriptional alterations may translate to adverse effects on sex differentiation and reproduction in fish.


Assuntos
Ritmo Circadiano/efeitos dos fármacos , Estradiol/toxicidade , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Progesterona/toxicidade , Transcriptoma/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Feminino , Gônadas/efeitos dos fármacos , Gônadas/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Transdução de Sinais/efeitos dos fármacos , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
11.
Ecotoxicol Environ Saf ; 183: 109556, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31509926

RESUMO

Dydrogesterone (DDG) is a synthetic progestin used in contraception and hormone replacement therapy. Our previous transcriptome data showed that the response to light stimulus, photoperiodism and rhythm related gene ontology (GO) terms were significantly enriched in the brain of zebrafish after chronic exposure to DDG. Here we investigated the effects of DDG on the eye of zebrafish. Zebrafish were exposed to DDG at three concentration levels (3.39, 33.1, and 329 ng L-1) for 120 days. Based on our previous transcriptome data, the transcription of genes involved in visual cycle and circadian rhythm network was examined by qPCR analysis. In the visual cycle network, exposure to all concentrations of DDG significantly decreased transcription of grk7a, aar3a and guca1d, while increased the transcription of opn1mw4 and opn1sw2 at the low concentration. Importantly, exposure to all concentrations of DDG down-regulated the transcription of rep65a that encodes a critical enzyme to catalyze the conversion from all-trans-retinal to 11-cis-retinal in the eye of male zebrafish. In the circadian rhythm network, DDG enhanced the transcription of clocka, arntl2 and nifil3-5 at all three concentrations, while it decreased the transcription of cry5, per1b, nr1d2b and si:ch211.132b12.7. In addition, DDG decreased the transcription of tefa in both males and females. Moreover, histological analysis showed the exposure to 329 ng L-1 of DDG decreased the thickness of retinal ganglion cell in the eye of male zebrafish. These results indicated that DDG exposure could affect the transcription of genes in visual cycle and circadian rhythm network in the eyes of zebrafish. This suggests that DDG has potential negative impact on the normal eye function.


Assuntos
Ritmo Circadiano/efeitos dos fármacos , Didrogesterona/toxicidade , Retina/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Animais , Ritmo Circadiano/genética , Relação Dose-Resposta a Droga , Feminino , Masculino , Retina/metabolismo , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/metabolismo
12.
Environ Sci Technol ; 52(15): 8903-8911, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30004691

RESUMO

Synthetic progestins are widely used in human and veterinary medicine. They can enter aquatic environments mainly via wastewater discharge and agricultural runoff, thus affecting fish populations in receiving waters. Here, we investigated the chronic effects of dydrogesterone (DDG) on zebrafish from 21 to 140 days post-fertilization (dpf) at 3.39, 33.1, and 329 ng L-1. The results showed that the male ratio increased with the exposure concentration, and after 120 days of exposure to 329 ng L-1, 98% of the fish were males. The DDG exposure during sex differentiation significantly increased the transcription of dmrt1 (1.83-fold) and apoptosis-related genes but suppressed the transcription of cyp19a1a (3.16-fold). Histological analysis showed that the exposure to DDG at 329 ng L-1 caused 61.5% of mature spermatocytes in males, while the exposure to DDG at 33.1 ng L-1 resulted in 14.7% of atretic follicles in females. Microarray analysis identified spermatogenesis-related gene ontology (endothelial barrier and immune response) in the testes at all concentrations. Genes from phagosome, lysosome, and sphingolipid metabolism pathways were enriched and could be responsible for sperm maturation. The findings from this study demonstrate that DDG in the aquatic environment can cause male bias and accelerate sperm maturation in zebrafish, resulting in potential high ecological risks to fish populations.


Assuntos
Didrogesterona , Poluentes Químicos da Água , Animais , Feminino , Gônadas , Masculino , Maturação do Esperma , Peixe-Zebra
13.
Bull Environ Contam Toxicol ; 99(1): 39-45, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28214940

RESUMO

Little information has so far been known on the effects of synthetic progestogen dydrogesterone (DDG) in organisms like fish. This study aimed to investigate the effects of DDG on the transcriptional and biochemical alterations in zebrafish eleuthero-embryos. Zebrafish eleuthero-embryos were analyzed for the transcriptional alterations by real-time quantitative PCR (RT-qPCR) and biochemical changes by attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FITR) after 144 h exposure to DDG. The results of qPCR analysis showed that DDG exposure significantly suppressed the transcriptions of target genes involved in hypothalamic-pituitary-thyroid (HPT) axis, while it induced the expression of target genes mRNA belonging to hypothalamic-pituitary-gonad (HPG) axis. In addition, ATR-FTIR spectroscopy analysis showed that the biochemical alterations of protein, nucleic acid and lipid were observed following DDG treatment. The finding from this study suggests that DDG exposure could have potential multiple effects in fish.


Assuntos
Didrogesterona/toxicidade , Embrião não Mamífero/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/embriologia , Animais , Eleutherococcus , Sistema Endócrino , Congêneres da Progesterona , Poluentes Químicos da Água/metabolismo , Peixe-Zebra/metabolismo
14.
Ecotoxicol Environ Saf ; 105: 97-102, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24793519

RESUMO

The aim of this study was to evaluate the effects of three metals (Zn, Cd and Pb) on hepatic metallothionein (MT), cytochrome P450 1A (CYP1A) and vitellogenin (Vtg) mRNA expression in the liver of adult female mosquitofish (Gambusia affinis) after 1, 3 or 8d. Both concentration-response and time-course effects of hepatic MT, CYP1A and Vtg at the transcription level were determined by quantitative real-time PCR. The results from this study showed that Zn, Cd and Pb could significantly induced MT, CYP1A and Vtg mRNA expression levels in mosquitofish. In general, this study demonstrated that heavy metals modulate MT, CYP1A and Vtg mRNA expression levels in a metal-, concentration- or time-dependent manner.


Assuntos
Ciprinodontiformes/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Metais Pesados/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Sistema Enzimático do Citocromo P-450/genética , Feminino , Perfilação da Expressão Gênica , Fígado/efeitos dos fármacos , Masculino , Metalotioneína/genética , Vitelogeninas/genética
15.
Artigo em Inglês | MEDLINE | ID: mdl-38460577

RESUMO

Estrogens and androgens are typical steroid hormones and often occur together in contaminated aquatic environments, but their mixed effects in aquatic organisms have been less well reported. In this study, the endocrine disrupting effects of binary mixtures of 17ß-estradiol (E2) and testosterone (T) in western mosquitofish (Gambusia affinis) were assessed by analyzing the sex ratio, secondary sex characteristics, gonadal histology, and transcriptional expression of target genes related to the hypothalamic-pituitary-gonadal (HPG) axis in G. affinis (from embryos) continuously exposed to E2 (50 ng/L), T (T1: 50 ng/L; T2: 200 ng/L), and mixtures of both (E2 + T1: 50 + 50 ng/L; E2 + T2: 50 + 200 ng/L) for 119 d. The results showed that exposure to E2 + T1 and E2 + T2 reduced the length ratio of ray 4/6 ratio in male G. affinis, suggesting feminized phenomenon in male G. affinis. Furthermore, 16.7-38.5 % of female G. affinis showed masculinized anal fins and hemal spines when exposed to T alone and in combination with E2. Importantly, the transcriptional levels of certain target genes related to the HPG axis were significantly altered in G. affinis following exposure to E2 and T alone and in combinations. Moreover, exposure to E2 and T in combinations can lead to combined effects (such as synergistic and antagonistic effects) on the transcriptional levels of some genes. These results collectively suggest that exposure to environmentally relevant concentrations of E2 and T alone and in mixtures can impact the endocrine system of G. affinis, and may pose potential risks in aquatic systems.


Assuntos
Ciprinodontiformes , Poluentes Químicos da Água , Masculino , Feminino , Animais , Testosterona/metabolismo , Estradiol/metabolismo , Androgênios/toxicidade , Sistema Endócrino , Ciprinodontiformes/genética , Ciprinodontiformes/metabolismo , Poluentes Químicos da Água/metabolismo
16.
Aquat Toxicol ; 268: 106854, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309221

RESUMO

The interactions between estrogen and androgen in aquatic animals remain largely unknown. In this study, two generations (F0 and F1) of western mosquitofish (Gambusia affinis) were continuously exposed to 17α-ethinylestradiol (EE2, 10 ng/L), methyltestosterone (MT, 10 ng/L (MTL); 50 ng/L (MTH)), and mixtures (EE2+MTL and EE2+MTH). Various endpoints, including sex ratio (phenotypic and genetic), secondary sex characteristics, gonadal histology, and transcriptional profile of genes, were examined. The results showed that G. affinis exposed to MTH and EE2+MTH had a > 89.7 % of phenotypic males in F1 generation, with 34.5 and 50.0 % of these males originated from genetic females, respectively. Moreover, females from F0 and F1 generations exposed to MTH and EE2+MTH exhibited masculinized anal fins and skeletons. The combined effect of MT and EE2 on most endpoints was dependent on MT. Furthermore, significant transcriptional alterations in certain target genes were observed in both the F0 and F1 generations by EE2 and MT alone and by mixtures, showing some degree of interactions. These findings that the effects of EE2+MTH were primarily on the phenotypic sex of G. affinis in offspring generation suggest that G. affinis under chronic exposure to the binary mixture contaminated water could have sex-biased populations.


Assuntos
Ciprinodontiformes , Poluentes Químicos da Água , Masculino , Feminino , Animais , Etinilestradiol/toxicidade , Metiltestosterona/toxicidade , Poluentes Químicos da Água/toxicidade , Estrogênios , Ciprinodontiformes/genética
17.
Aquat Toxicol ; 257: 106457, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36848693

RESUMO

Estrone (E1) is one of the predominant natural estrogens detected in aquatic environments, yet little is known about its effects on the endocrine system in fish. In this study, the sex ratio, secondary sexual characteristics, gonadal histology, and transcriptional levels of genes closely related to sex differentiation and hypothalamic-pituitary-gonadal-liver (HPGL) axis were assessed in western mosquitofish (Gambusia affinis) after a full life-cycle exposure to E1 (0, 25.4, 143, 740, and 4300 ng/L) for 119 days. The results showed that exposure to 4300 ng/L of E1 resulted in 100% female and inhibited the growth of females. Exposure to environmentally relevant concentrations of E1 (143 and 740 ng/L) led to obvious feminization of skeletons and anal fins in males. Exposure to 740 and 4300 ng/L of E1 increased the proportion of mature spermatocytes in females, and exposure to 143 and 740 ng/L decreased the proportion of mature spermatocytes in males. Moreover, the transcripts of genes related to sex differentiation and HPGL axis were changed in the E1-exposed adult fish and embryos inside females. This study has provided valuable data on the endocrine disruption effects of E1 at environmentally relevant concentrations in G. affinis.


Assuntos
Ciprinodontiformes , Poluentes Químicos da Água , Masculino , Animais , Feminino , Estrona/toxicidade , Poluentes Químicos da Água/toxicidade , Sistema Endócrino , Gônadas
18.
Aquat Toxicol ; 261: 106635, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37478585

RESUMO

The issue of the additives leached from plastics has attracted widespread attention. More crucially, endocrine disruptor status for several leached additives has been established. However, little is known about the overall endocrine disrupting effects of aged plastic leachates. Therefore, the transcriptional responses of endocrine-related genes were assessed in the embryos of marine medaka (Oryzias melastigma), which were exposed to the leachates from aged plastics that were immersed into the simulated seawater (SW) or fish digest (FD). The results revealed that there was a great difference between the SW and FD leachates in the transcripts of endocrine-related genes. With the exception of cyp1a, all target genes had their transcripts potentially down-regulated by the FD leachates. Chgl (a biomarker for estrogens), pparß (related to lipid metabolism), and cyp19a (related to sexual differentiation and reproduction) transcripts tended to be repressed by the SW leachates, while pparα, pparγ and cyp1a (mediating metabolism of xenobiotics) transcripts were stimulated. In addition, a redundancy analysis was carried out to determine the relationship between the leached additives and the transcriptional changes. However, the additives only partially explained the variation in the transcripts of endocrine-related genes (24.8%), indicating that other leached additives may have an impact on target gene transcription. This study provided molecular evidence of the aged plastic leachates' endocrine disrupting effects. Exploring the primary factors that affect the transcriptional alterations would require more research.


Assuntos
Disruptores Endócrinos , Oryzias , Poluentes Químicos da Água , Animais , Plásticos/toxicidade , Oryzias/fisiologia , Disruptores Endócrinos/toxicidade , Disruptores Endócrinos/metabolismo , Poluentes Químicos da Água/toxicidade , Estrogênios/metabolismo
19.
J Hazard Mater ; 446: 130700, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36592560

RESUMO

Marine plastic pollution has garnered substantial attention, but the potential endocrine disrupting effects of plastic leachates in marine organisms remain unclear. In this study, the larvae of marine medaka (Oryzias melastigma) were exposed to the leachates from virgin and aged plastics soaked in simulated seawater and fish digest for 3 days. The concentrations of vitellogenin (VTG), estradiol (E2), and 11-ketotestosterone (11-KT), as well as the transcripts of endocrine-related genes were measured in the larvae. The results revealed that endogenous E2 was more sensitive to plastic leachates than VTG and 11-KT, which was significantly affected by 26.7 % of all plastic leachates. Among all genes, estrogen receptor α was impacted mostly, being up-regulated by 53.3 % of leachates from aged plastics. The comparative results demonstrated that the leachates from plastics with different statuses caused a greater difference than those from plastics in different simulated media, and the leachates from aged plastics resulted in higher endocrine disrupting effects than those from virgin plastics. In addition, seven leached additives (plasticizers and flame retardants) could explain 25.6 % of the hormonal effects using redundancy analysis, indicating that other additives in the plastic leachates can also play important roles in regulating the endocrine system of O. melastigma larvae.


Assuntos
Oryzias , Poluentes Químicos da Água , Animais , Plásticos/toxicidade , Oryzias/genética , Larva , Estradiol/toxicidade , Estradiol/análise , Sistema Endócrino , Vitelogeninas/genética , Poluentes Químicos da Água/análise
20.
Phytochemistry ; 213: 113774, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37400011

RESUMO

Two previously undescribed phloroglucinol derivatives [(±) evolephloroglucinols A and B], five unusual coumarins [evolecoumarins A and B and (±) evolecoumarins C-E], and one novel enantiomeric quinoline-type alkaloid [(±) evolealkaloid A], along with 20 known compounds, were isolated from the EtOH extract of the roots of Evodia lepta Merr. Their structures were elucidated by extensive spectroscopic analyses. The absolute configurations of the undescribed compounds were determined by X-ray diffraction or computational calculations. Their anti-neuroinflammatory effects were assayed. Among the identified compounds, compound 5a effectively reduced nitric oxide (NO) production with an EC50 value of 22.08 ± 0.46 µM. Hence, it could indeed inhibit the lipopolysaccharide (LPS)-induced Nod-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome.


Assuntos
Alcaloides , Evodia , Rutaceae , Evodia/química , Cumarínicos/farmacologia , Cumarínicos/química , Floroglucinol/farmacologia , Floroglucinol/química , Alcaloides/farmacologia , Estrutura Molecular , Óxido Nítrico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA