RESUMO
The advent of Neural-network Quantum States (NQS) has significantly advanced wave function ansatz research, sparking a resurgence in orbital space variational Monte Carlo (VMC) exploration. This work introduces three algorithmic enhancements to reduce computational demands of VMC optimization using NQS: an adaptive learning rate algorithm, constrained optimization, and block optimization. We evaluate the refined algorithm on complex multireference bond stretches of H2O and N2 within the cc-pVDZ basis set and calculate the ground-state energy of the strongly correlated chromium dimer (Cr2) in the Ahlrichs SV basis set. Our results achieve superior accuracy compared to coupled cluster theory at a relatively modest CPU cost. This work demonstrates how to enhance optimization efficiency and robustness using these strategies, opening a new path to optimize large-scale restricted Boltzmann machine-based NQS more effectively and marking a substantial advancement in NQS's practical quantum chemistry applications.
RESUMO
The matrix product state (MPS) Ansatz offers a promising approach for finding the ground state of molecular Hamiltonians and solving quantum chemistry problems. Building on this concept, the proposed technique of quantum circuit MPS (QCMPS) enables the simulation of chemical systems using a relatively small number of qubits. In this study, we enhance the optimization performance of the QCMPS Ansatz by employing the variational quantum imaginary time evolution (VarQITE) approach. Guided by McLachlan's variational principle, the VarQITE method provides analytical metrics and gradients, resulting in improved convergence efficiency and robustness of the QCMPS. We validate these improvements numerically through simulations of H2, H4, and LiH molecules. In addition, given that VarQITE is applicable to non-Hermitian Hamiltonians, we evaluate its effectiveness in preparing the ground state of transcorrelated Hamiltonians. This approach yields energy estimates comparable to the complete basis set (CBS) limit while using even fewer qubits. In particular, we perform simulations of the beryllium atom and LiH molecule using only three qubits, maintaining high fidelity with the CBS ground state energy of these systems. This qubit reduction is achieved through the combined advantages of both the QCMPS Ansatz and transcorrelation. Our findings demonstrate the potential practicality of this quantum chemistry algorithm on near-term quantum devices.
RESUMO
Neurons in the penumbra (the area surrounding ischemic tissue that consists of still viable tissue but with reduced blood flow and oxygen transport) may be rescued following stroke if adequate perfusion is restored in time. It has been speculated that post-stroke angiogenesis in the penumbra can reduce damage caused by ischemia. However, the mechanism for neovasculature formation in the brain remains unclear and vascular-targeted therapies for brain ischemia remain suboptimal. Here, we show that VEGFR1 was highly upregulated in pericytes after stroke. Knockdown of VEGFR1 in pericytes led to increased infarct area and compromised post-ischemia vessel formation. Furthermore, in vitro studies confirmed a critical role for pericyte-derived VEGFR1 in both endothelial tube formation and pericyte migration. Interestingly, our results show that pericyte-derived VEGFR1 has opposite effects on Akt activity in endothelial cells and pericytes. Collectively, these results indicate that pericyte-specific expression of VEGFR1 modulates ischemia-induced vessel formation and vascular integrity in the brain.
Assuntos
AVC Isquêmico , Acidente Vascular Cerebral , Circulação Cerebrovascular/fisiologia , Células Endoteliais/metabolismo , Humanos , Isquemia/metabolismo , Perfusão , Pericitos , Acidente Vascular Cerebral/metabolismoRESUMO
BACKGROUND/AIMS: Hepatocellular carcinoma (HCC) remains a difficult problem that significantly affects the survival of the afflicted patients. Accumulating evidence has demonstrated the functions of long non-coding RNA (lncRNA) in HCC. In the present study, we aimed to explore the potential roles of PVT1 in the tumorigenesis and progression of HCC. METHODS: In this study, quantitative reverse transcription-polymerase chain reaction (RT-qPCR) was applied to detect the differences between PVT1 expression in HCC tissues and cell lines. Then, the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases were searched to confirm the relationship between PVT1 expression and HCC. Moreover, a meta-analysis comprising TCGA, GEO, and RT-qPCR was applied to estimate the expression of PVT1 in HCC. Then, cell proliferation was evaluated in vitro. A chicken chorioallantoic membrane (CAM) model of HCC was constructed to measure the effect on tumorigenicity in vivo. To further explore the sponge microRNA (miRNA) of PVT1 in HCC, we used TCGA, GEO, a gene microarray, and target prediction algorithms. TCGA and GEO and the gene microarray were used to select the differentially expressed miRNAs, and the different target prediction algorithms were applied to predict the target miRNAs of PVT1. RESULTS: We found that PVT1 was markedly overexpressed in HCC tissue than in normal liver tissues based on both RT-qPCR and data from TCGA, and the overexpression of PVT1 was closely related to the gender and race of the patient as well as to higher HCC tumor grades. Also, a meta-analysis of 840 cases from multiple sources (TCGA, GEO and the results of our in-house RT-qPCR) showed that PVT1 gained moderate value in discriminating HCC patients from normal controls, confirming the results of RT-qPCR. Additionally, the upregulation of PVT1 could promote HCC cell proliferation in vitro and vivo. Based on the competing endogenous RNA (ceRNA) theory, the PVT1/miR-424-5p/INCENP axis was finally selected for further research. The in silico prediction revealed that there were complementary sequences between PVT1 and miR-424-5p as well as between miR-424-5p and INCENP. Furthermore, a negative correlation trend was found between miR-424-5p and PVT1 based on RT-qPCR, whereas a positive correlation trend was found between PVT1 and INCENP based on data from TCGA. Also, INCENP small interfering RNA (siRNA) could significantly inhibit cell proliferation and viability. CONCLUSIONS: We hypothesized that PVT1 could affect the biological function of HCC cells via targeting miR-424-5p and regulating INCENP. Focusing on the new insight of the PVT1/miR-424-5p/INCENP axis, this study provides a novel perspective for HCC therapeutic strategies.
Assuntos
Carcinoma Hepatocelular , Proteínas Cromossômicas não Histona , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , RNA Longo não Codificante , RNA Neoplásico , Idoso , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Proliferação de Células/genética , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Feminino , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismoRESUMO
BACKGROUND microRNAs (miRNAs) have a role as biomarkers in human cancer. The aim of this study was to use bioinformatics data, and review of cases identified from the literature, to investigate the role of microRNA-99a-3p (miR-99a-3p) in prostate cancer, including the identification of its target genes and signaling pathways. MATERIAL AND METHODS Meta-analysis from a literature review included 965 cases of prostate cancer. Bioinformatics databases interrogated for miR-99a-3p in prostate cancer included The Cancer Genome Atlas (TCGA), the Gene Expression Omnibus (GEO), and ArrayExpress. Twelve computational predictive algorithms were developed to integrate miR-99a-3p target gene prediction data. Bioinformatics analysis data from Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-protein interaction (PPI) network analysis were used investigate the possible pathways and target genes for miR-99a-3p in prostate cancer. RESULTS TCGA data showed that miR-99a was down-regulated in prostate cancer when compared with normal prostate tissue. Receiver-operating characteristic (ROC) curve area under the curve (AUC) for miR-99a-3p was 0.660 (95% CI, 0.587-0.732) or a moderate level of discriminations. Pathway analysis showed that miR-99a-3p was associated with the Wnt and vascular endothelial growth factor (VEGF) signaling pathways. The PPP3CA and HYOU1 genes, selected from the PPI network, were highly expressed in prostate cancer tissue compared with normal prostate tissue, and negatively correlated with the expression of miR-99a-3p. CONCLUSIONS In prostate cancer, miR-99a-3p expression was associated with the Wnt and VEGF signaling pathways, which might inhibit the expression of PPP3CA or HYOU1.
Assuntos
Biologia Computacional , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neoplasias da Próstata/genética , Perfilação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Genoma Humano , Humanos , Masculino , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Neoplasias da Próstata/patologia , Mapas de Interação de Proteínas/genética , Reprodutibilidade dos TestesRESUMO
BACKGROUND: To examine the clinical value of miR-198-5p in lung squamous cell carcinoma (LUSC). METHODS: Gene Expression Omnibus (GEO) microarray datasets were used to explore the miR-198-5p expression and its diagnostic value in LUSC. Real-time reverse transcription quantitative polymerase chain reaction was used to evaluate the expression of miR-198-5p in 23 formalin-fixed, paraffin-embedded (FFPE) LUSC tissues and corresponding non-cancerous tissues. The correlation between miR-198-5p expression and clinic pathological features was assessed. Meanwhile, putative target messenger RNAs of miR-198-5p were identified based on the analysis of differentially expressed genes in the Cancer Genome Atlas (TCGA) and 12 miRNA prediction tools. Subsequently, the putative target genes were sent to Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses. RESULTS: MiR-198-5p was low expressed in LUSC tissues. The combined standard mean difference (SMD) values of miR-198-5p expression based on GEO datasets were - 0.30 (95% confidence interval (CI) - 0.54, - 0.06) and - 0.39 (95% CI - 0.83, 0.05) using fixed effect model and random effect model, respectively. The sensitivity and specificity were not sufficiently high, as the area under the curve (AUC) was 0.7749 (Q* = 0.7143) based on summarized receiver operating characteristic (SROC) curves constructed using GEO datasets. Based on the in-house RT-qPCR, miR-198-5p expression was 4.3826 ± 1.7660 in LUSC tissues and 4.4522 ± 1.8263 in adjacent normal tissues (P = 0.885). The expression of miR-198-5p was significantly higher in patients with early TNM stages (I-II) than that in cases with advanced TNM stages (III-IV) (5.4400 ± 1.5277 vs 3.5690 ± 1.5228, P = 0.008). Continuous variable-based meta-analysis of GEO and PCR data displayed the SMD values of - 0.26 (95% CI - 0.48, - 0.04) and - 0.34 (95% CI - 0.71, 0.04) based on fixed and random effect models, respectively. As for the diagnostic value of miR-198-5p, the AUC based on the SROC curve using GEO and PCR data was 0.7351 (Q* = 0.6812). In total, 542 genes were identified as the targets of miR-198-5p. The most enriched Gene Ontology terms were epidermis development among biological processes, cell junction among cellular components, and protein dimerization activity among molecule functions. The pathway of non-small cell lung cancer was the most significant pathway identified using Kyoto Encyclopedia of Genes and Genomes analysis. CONCLUSION: The expression of miR-198-5p is related to the TNM stage. Thus, miR-198-5p might play an important role via its target genes in LUSC.
Assuntos
Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma de Células Escamosas/genética , Perfilação da Expressão Gênica , Neoplasias Pulmonares/genética , MicroRNAs/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Escamosas/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Ontologia Genética , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Prognóstico , Curva ROCRESUMO
The androgen receptor signaling inhibitor (ARSI) enzalutamide (Enz) has shown critical efficacy in the treatment of advanced prostate cancer (PCa). However, the development of drug resistance is a significant factor contributing to mortality in PCa patients. We aimed to explore the key mechanisms of Enz-resistance. Through analysis of GEO databases, we identified SLC4A4 as a novel driver in Enz resistance. Long-term Enz treatment leads to the up-regulation of SLC4A4, which in turn mediates P53 lactylation via the NF-κB/STAT3/SLC4A4 axis, ultimately leading to the development of Enz resistance and progression of PCa. SLC4A4 knockdown overcomes Enz resistance both in vitro and in vivo. Hence, our results suggest that targeting SLC4A4 could be a promising therapeutic strategy for Enz resistance. STATEMENT OF SIGNIFICANCE: SLC4A4 is a novel driver of enzalutamide resistance.
Assuntos
Benzamidas , Resistencia a Medicamentos Antineoplásicos , Nitrilas , Feniltioidantoína , Neoplasias da Próstata , Simportadores de Sódio-Bicarbonato , Animais , Humanos , Masculino , Camundongos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , NF-kappa B/metabolismo , NF-kappa B/genética , Feniltioidantoína/farmacologia , Feniltioidantoína/uso terapêutico , Feniltioidantoína/análogos & derivados , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto , Simportadores de Sódio-Bicarbonato/genéticaRESUMO
Neural-network quantum states (NQS) employ artificial neural networks to encode many-body wave functions in a second quantization through variational Monte Carlo (VMC). They have recently been applied to accurately describe electronic wave functions of molecules and have shown the challenges in efficiency compared with traditional quantum chemistry methods. Here, we introduce a general nonstochastic optimization algorithm for NQS in chemical systems, which deterministically generates a selected set of important configurations simultaneously with energy evaluation of NQS. This method bypasses the need for Markov-chain Monte Carlo within the VMC framework, thereby accelerating the entire optimization process. Furthermore, this newly developed nonstochastic optimization algorithm for NQS offers comparable or superior accuracy compared to its stochastic counterpart and ensures more stable convergence. The application of this model to test molecules exhibiting strong electron correlations provides further insight into the performance of NQS in chemical systems and opens avenues for future enhancements.
RESUMO
The contribution of histone mark redistribution to the age-induced decline of endogenous neuroprotection remains unclear. In this study, we used an intracerebral hemorrhage (ICH)-induced acute brain injury rat model to study the transcriptional and chromatin responses in 13- and 22-month-old rats. Transcriptome analysis (RNA-seq) revealed that the expression of neuroinflammation-associated genes was systematically upregulated in ICH rat brains, irrespective of age. Further, we found that interferon-γ (IFN-γ) response genes were activated in both 13- and 22-month-old rats. Anti-IFN-γ treatment markedly reduced ICH-induced acute brain injury in 22-month-old rats. At the chromatin level, ICH induced the redistribution of histone modifications in the promoter regions, especially H3K4me3 and H3K27me3, in neuroinflammation-associated genes in 13- and 22-month-old rats, respectively. Moreover, ICH-induced histone mark redistribution and gene expression were found to be correlated. Collectively, these findings demonstrate that histone modifications related to gene expression are extensively regulated in 13- and 22-month-old rats and that anti-IFN-γ is effective for ICH treatment, highlighting the potential of developing therapies targeting histone modifications to cure age-related diseases, including brain injury and neuroinflammation.
RESUMO
OBJECTIVE: To characterize the association of onset to puncture time (OPT) with clinical outcomes among patients with acute basilar artery occlusion receiving endovascular therapy (EVT) in clinical practice. METHODS: Using the EVT for Acute Basilar Artery Occlusion (BASILAR) study, we identified consecutive patients with acute basilar artery occlusion receiving EVT in 47 comprehensive stroke centers in China from January 2014 to May 2019. The primary outcome was favorable functional outcome (defined as modified Rankin Scale score [mRS] 0-3) at 90 days. Secondary outcomes included function independence (mRS 0-2), mortality, and symptomatic intracerebral hemorrhage. The associations of OPT with clinical outcomes were analyzed using multivariable logistic regression (OPT as a categorical variable) and restricted cubic spline regression (OPT as a continuous variable). RESULTS: Among 639 eligible patients, the median age was 64 years, and median OPT was 328 minutes (interquartile range 220-490). Treatment within 4-8 hours and 8-12 hours was associated with lower rates of favorable outcome (adjusted odds ratio, 0.63 [95% confidence interval (CI), 0.40-0.98] and 0.47 [95% CI, 0.23-0.93], respectively) compared with treatment within 4 hours. Restricted cubic spline regression analysis showed that the OPT had L-shaped associations with favorable outcome (p nonlinearity = 0.028) and functional independence (p nonlinearity = 0.025), with significant benefit loss throughout the first 9 hours, but then appeared relatively flat. The odds of mortality increased relatively for OPT up to 9 hours, but then leveled off (p nonlinearity = 0.042). The association between symptomatic intracerebral hemorrhage and OPT was not significant. CONCLUSION: Among patients with acute basilar artery occlusion in routine practice, earlier treatment with EVT was associated with better outcomes throughout the first 9 hours after onset, but benefit may sustain unchanged afterwards. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that for patients with acute ischemic stroke due to basilar artery occlusion, earlier EVT is associated with better outcomes.
Assuntos
Arteriopatias Oclusivas , Procedimentos Endovasculares , AVC Isquêmico , Acidente Vascular Cerebral , Arteriopatias Oclusivas/complicações , Arteriopatias Oclusivas/cirurgia , Artéria Basilar/diagnóstico por imagem , Artéria Basilar/cirurgia , Humanos , Pessoa de Meia-Idade , Razão de Chances , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/cirurgia , Resultado do TratamentoRESUMO
INTRODUCTION: Pancreaticoduodenectomy (PD) has been widely applied as a standard surgical procedure to treat periampullary diseases. The placement of a pancreaticojejunal anastomotic stent is considered an effective and safe method for preventing pancreatic fistula after PD. Recently, the role of pancreaticojejunal anastomotic stents has been challenged, as gradually increasing complications have been observed. Stent-related small bowel perforation has only occurred in 2 cases as long-term complications but has not been reported to occur within 1 week after surgery. PATIENT CONCERNS: Here, we report the case of a 71-year-old female patient complaining of painless jaundice who underwent PD with a pancreaticojejunal anastomotic stent for a duodenal papillary adenocarcinoma (T4N1M0). Four days after surgery, she had a sudden rise in temperature, high white blood cell count, significantly elevated C-reactive protein and 400 ml green-brown drainage fluid. Enhanced computed tomography showed hydrops abdominis. DIAGNOSIS: Small bowel perforation caused by stent migration was considered first. INTERVENTIONS: An emergency exploratory laparotomy was performed. We located the pancreaticojejunal anastomotic stent, which extended 2âcm from the small bowel, and sutured the jejunum hole after cutting away the protruding part of the stent. OUTCOMES: The patient recovered smoothly and was discharged on the 7th day after the second surgery. After more than 12 months of follow-up, the patient is doing well and is free of any symptoms related to the procedure. CONCLUSION: We caution that stent-related complications can occur when perioperative patients suffer from unexplained or sudden changes in vital signs after PD. In addition, the function of the pancreaticojejunal anastomotic stent needs to be reevaluated by future studies.
Assuntos
Perfuração Intestinal/etiologia , Doenças do Jejuno/etiologia , Falha de Prótese/efeitos adversos , Stents/efeitos adversos , Idoso , Feminino , Humanos , Pancreaticoduodenectomia/efeitos adversos , Pancreaticojejunostomia/efeitos adversos , Complicações Pós-Operatórias/etiologiaRESUMO
Oxylipins are a series of bioactive lipid metabolites derived from polyunsaturated fatty acids that are involved in cerebral homeostasis and the development of intracerebral hemorrhage (ICH). However, comprehensive quantification of the oxylipin profile in ICH remains unknown. Therefore, an ICH mouse model was constructed and liquid chromatography tandem mass spectrometry was then performed to quantify the change in oxylipins in ICH. The expression of the oxylipin relative enzymes was also reanalyzed based on RNA-seq data from our constructed ICH dataset. A total of 58 oxylipins were quantifiable and the levels of 17 oxylipins increased while none decreased significantly in the first 3 days following ICH. The most commonly increased oxylipins in ICH were derived from AA (10/17) and EPA (4/17) followed by LA (2/17) and DHA (1/17). 18-HEPE from EPA was the only oxylipin that remained significantly increased from 0.5 to 3 days following ICH. Furthermore, 14 of the increased oxylipins reached a peak level on the first day of ICH, and soon decreased while five oxylipins (PGJ2, 15-oxo-ETE, 12-HEPE, 18-HEPE, and 5-oxo-ETE) had increased 3 days after ICH suggesting that the profile shifted with the progression of ICH. In our constructed RNA-seq dataset based on ICH rats, 90 oxylipin relative molecules were detected except for COX. Among these, Cyp4f18, Cyp1b1, Cyp2d3, Cyp2e1, Cyp1a1, ALOX5AP, and PLA2g4a were found up-regulated and Cyp26b1 was found to decrease in ICH. In addition, there was no significant change in sEH in ICH. This study provides fundamental data on the profile of oxylipins and their enzymes in ICH. We found that the profile shifted as the progression of ICH and the metabolism of arachidonic acid and eicosapentaenoic acid was highly affected in ICH, which will help further studies explore the functions of oxylipins in ICH.
RESUMO
RNA-binding proteins (RBPs) have been shown to be involved in posttranscriptional regulation, which plays an important role in the pathophysiology of intracerebral hemorrhage (ICH). Peroxiredoxin 1 (Prdx1), an RBP, plays an important role in regulating inflammation and apoptosis. On the basis that inflammation and apoptosis may contribute to ICH-induced brain injury, in this study, we used ICH models coupled with in vitro experiments, to investigate the role and mechanism of Prdx1 in regulating inflammation and apoptosis by acting as an RBP after ICH. We first found that Prdx1 was significantly up-regulated in response to ICH-induced brain injury and was mainly expressed in astrocytes and microglia in ICH rat brains. After overexpressing Prdx1 by injecting adeno-associated virus (AAV) into the striatum of rats at 3 weeks, we constructed ICH models and found that Prdx1 overexpression markedly reduced inflammation and apoptosis after ICH. Furthermore, RNA immunoprecipitation combined with high-throughput sequencing (RIP-seq) in vitro revealed that Prdx1 affects the stability of inflammation- and apoptosis-related mRNA, resulting in the inhibition of inflammation and apoptosis. Finally, overexpression of Prdx1 significantly alleviated the symptoms and mortality of rats subjected to ICH. Our results show that Prdx1 reduces ICH-induced brain injury by targeting inflammation- and apoptosis-related mRNA stability. Prdx1 may be an improved therapeutic target for alleviating the brain injury caused by ICH.
RESUMO
Lung adenocarcinoma (LUAD), the main subtype of non-small cell lung cancer, is known to be regulated by various microRNAs (miRs/miRNAs); however, the role of miR-198-5p in LUAD has not been clarified. In the present study, the clinical value of miR-198-5p in LUAD and its potential molecular mechanism was evaluated. miR-198-5p expression was examined by reverse transcription-quantitative PCR (RT-qPCR) in 101 paired LUAD and adjacent normal lung tissues. Subsequently, the miR-198-5p expression level was determined from microarray data from the Gene Expression Omnibus, ArrayExpress and by meta-analyses. Furthermore, the target mRNAs of miR-198-5p from 12 miRNA-mRNA predictive tools were intersected with The Cancer Genome Atlas (TCGA)-based differentially expressed genes. In addition, Gene Ontology annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were conducted to determine the possible mechanism of miR-198-5p in LUAD. The Search Tool for the Retrieval of Interacting Genes/Proteins database was employed to construct a protein-protein interaction network among the potential target genes of miR-198-5p. The results showed that miR-198-5p expression was lower in LUAD tissues than in adjacent non-cancerous lung tissues (4.469±2.495 vs. 5.301±2.502; P=0.015). Meta-analyses, including the data from the present study and online microarray data, also verified the downregulation of miR-198-5p in 584 cases of LUAD. The expression of miR-198-5p was associated with the age, blood vessel invasion, Tumor-Node-Metastasis stage, and lymph node metastasis of patients with LUAD and served as an independent prognostic factor for survival. The hub genes of miR-198-5p were upregulated in LUAD, according to TCGA and The Human Protein Atlas. For the KEGG pathway analysis, the most enriched KEGG pathway was the p53 signaling pathway (P=1.42×10-6). These findings indicated that the downregulation of miR-198-5p may play a pivotal role in the development of LUAD by targeting various signaling pathways.
RESUMO
Aging has been shown to contribute to both the declined biofunctions of aging brain and aggravation of acute brain damage, and the former could be reversed by young plasma. These results suggest that young plasma treatment may also reduce the acute brain damage induced by intracerebral hemorrhage (ICH). In the present study, we first found that the administration of young plasma significantly reduced the mortality and neurological deficit score in aging ICH rodents, which might be due to the decreased brain water content, damaged neural cells, and increased survival neurons around the perihematomal brain tissues. Then, proteomics analysis was used to screen out the potential neuroprotective circulating factors and the results showed that many factors were changed in health human plasma among young, adult, and old population. Among these significantly changed factors, the plasma insulin-like growth factor 1 (IGF-1) level was significantly decreased with age, which was further confirmed both in human and rats detected by ELISA. Additionally, the brain IGF-1 protein level in aging ICH rats was markedly decreased when compared with young rats. Interestingly, the relative decreased brain IGF-1 level was reversed by the treatment of young plasma in aging ICH rats, while the mRNA level was non-significantly changed. Furthermore, the IGF-1 administration significantly ameliorated the acute brain injury in aging ICH rats. These results indicated that young circulating factors, like IGF-1, may enter brain tissues to exert neuroprotective effects, and young plasma may be considered as a novel therapeutic approach for the clinical treatment of aging-related acute brain injury.
Assuntos
Envelhecimento/metabolismo , Lesões Encefálicas/metabolismo , Encéfalo/metabolismo , Hemorragia Cerebral/metabolismo , Plasma/metabolismo , Adulto , Idoso , Envelhecimento/efeitos dos fármacos , Animais , Encéfalo/efeitos dos fármacos , Lesões Encefálicas/tratamento farmacológico , Hemorragia Cerebral/tratamento farmacológico , Modelos Animais de Doenças , Feminino , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-DawleyRESUMO
For the purpose of demonstrating the clinical value and unraveling the molecular mechanisms of micro RNA (miR)-1-3p in colorectal carcinoma (CRC), the present study collected expression and diagnostic data from Gene Expression Omnibus (GEO), ArrayExpress and existing literature to conduct metaanalyses and diagnostic tests. Furthermore, the potential targets of miR13p were attained from datasets that transfected miR13p into CRC cells, online prediction databases and differentially expressed genes from The Cancer Genome Atlas and literature. Subsequently, bioinformatics analysis was conducted based on the aforementioned selected target genes. As a result, downregulation of miR13p was observed. The combined standardized mean difference was 0.51 with 95% confidence interval (CI) of 0.68 to 0.33 using a fixed effect model, which demonstrated a significant downregulation of miR13p in CRC. The combined sensitivity, specificity, positive likelihood ratio, negative likelihood ratio diagnostic score and odds ratio were 0.74 (95%CI: 0.48, 0.90), 0.75 (95%CI: 0.35, 0.94), 2.94 (95%CI: 1.01, 8.55), 0.34 (95%CI: 0.19, 0.60), 2.15 (95%CI: 1.06, 3.23) and 8.57 (95%CI: 2.89, 25.36). The summarized receiver operating characteristic curve demonstrated that the area under the curve was 0.81. In bioinformatics analyses based on 30 promising targets, the most enriched terms in Gene Ontology were positive regulation of transcription from RNA polymerase II promoter, extracellular region and transcription factor binding. Kyoto Encyclopedia of Genes and Genomes pathway analysis highlighted the pathway termed cytokinecytokine receptor interaction. In proteinprotein interaction analysis, platelet factor 4 was selected as the hub gene. To conclude, miR13p is downregulated in CRC and likely suppresses CRC via multiple biological approaches, which indicates the diagnostic potential and tumor suppressive efficacy.
Assuntos
Neoplasias Colorretais/genética , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , MicroRNAs/genética , Interferência de RNA , Biomarcadores Tumorais , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/metabolismo , Biologia Computacional/métodos , Bases de Dados de Ácidos Nucleicos , Perfilação da Expressão Gênica , Ontologia Genética , Humanos , Prognóstico , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Sensibilidade e Especificidade , Transdução de SinaisRESUMO
Prostate cancer (PCa) remains a principal issue to be addressed in male cancerassociated mortality. Therefore, the present study aimed to examine the clinical value and associated molecular mechanism of microRNA (miR)1 in PCa. A metaanalysis was conducted to evaluate the diagnosis of miR1 in PCa via Gene Expression Omnibus and ArrayExpress datasets, The Cancer Genome Atlas miR1 expression data and published literature. It was identified that expression of miR1 was significantly downregulated in PCa. Decreased miR1 expression possessed moderate diagnostic value, with area under the curve, sensitivity, specificity and odds ratio values at 0.73, 0.77, 0.57 and 4.60, respectively. Using bioinformatics methods, it was revealed that a number of pathways, including the 'androgen receptor signaling pathway', 'androgen receptor activity', 'transcription factor binding' and 'protein processing in the endoplasmic reticulum', were important in PCa. A total of seven hub genes, including phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazolesuccinocarboxamide synthase (PAICS), cadherin 1 (CDH1), SRC protooncogene, nonreceptor tyrosine kinase, twist family bHLH transcription factor 1 (TWIST1), ZW10 interacting kinetochore protein (ZWINT), PCNA clamp associated factor (KIAA0101) and androgen receptor, among which, five (PAICS, CDH1, TWIST1, ZWINT and KIAA0101) were significantly upregulated and negatively correlated with miR1, were identified as key miR1 target genes in PCa. Additionally, it was investigated whether miR1 and its hub genes were associated with clinical features, including age, tumor status, residual tumor, lymph node metastasis, pathological T stage and prostate specific antigen level. Collectively the results suggest that miR1 may be involved in the progression of PCa, and consequently be a promising diagnostic marker. The 'androgen receptor signaling pathway', 'androgen receptor activity', 'transcription factor binding' and 'protein processing in the endoplasmic reticulum' may be crucial interactive pathways in PCa. Furthermore, PAICS, CDH1, TWIST1, ZWINT and KIAA0101 may serve as crucial miR1 target genes in PCa.
Assuntos
MicroRNAs/genética , Técnicas de Diagnóstico Molecular , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , Biologia Computacional/métodos , Bases de Dados de Ácidos Nucleicos , Perfilação da Expressão Gênica , Humanos , Masculino , Metanálise como Assunto , Neoplasias da Próstata/metabolismo , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Sensibilidade e EspecificidadeRESUMO
In order to determine the diagnostic efficacy of microRNA (miR)-122-5p and to identify the potential molecular signaling pathways underlying the function of miR-122-5p in hepatocellular carcinoma (HCC), the expression profiles of data collected from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and literature databases were analyzed, along with any associations between clinicopathological characteristics and the diagnostic value of miR-122-5p in HCC. The intersection of 12 online prediction databases and differentially expressed genes from TCGA and GEO were utilized in order to select the prospective target genes of miR-122-5p in HCC. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein-protein interaction network (PPI) analyses were subsequently performed based on the selected target genes. The average expression level of miR-122-5p was decreased in HCC patients compared with controls from TCGA database (P<0.001), and the downregulation of miR-122-5p was significantly associated with HCC tissues (P<0.001), tumor vascular invasion (P<0.001), metastasis (P=0.001), sex (P=0.006), virus infection status (P=0.001) and tissue (compared with serum; P<0.001) in cases from the GEO database. The pooled sensitivity and specificity for miR-122-5p to diagnose HCC were 0.60 [95% confidence interval (CI), 0.48-0.71] and 0.81 (95% CI, 0.70-0.89), respectively. The area under the curve (AUC) value was 0.76 (95% CI, 0.72-0.80), while in Meta-DiSc 1.4, the AUC was 0.76 (Q*=0.70). The pooled sensitivity and specificity were 0.60 (95% CI, 0.57-0.62) and 0.79 (95% CI, 0.76-0.81), respectively. A total of 198 overlapping genes were selected as the potential target genes of miR-122-5p, and 7 genes were defined as the hub genes from the PPI network. Cell division cycle 6 (CDC6), minichromosome maintenance complex component 4 (MCM4) and MCM8, which serve pivotal functions in the occurrence and development of HCC, were the most significant hub genes. The regulation of cell proliferation for cellular adhesion and the biosynthesis of amino acids was highlighted in the GO and KEGG pathway analyses. The downregulation of miR-122-5p in HCC demonstrated diagnostic value, worthy of further attention. Therefore, miR-122-5p may function as a tumor suppressor by modulating genome replication.
RESUMO
BACKGROUND: The specific expression level and clinical significance of miR-375-3p in HNSCC had not been fully stated, as well as the overall biological function and molecular mechanisms. Therefore, we purpose to carry out a comprehensive meta-analysis to further explore the clinical significance and potential function mechanism of miR-375-3p in HNSCC. METHODS: HNSCC-related data was gained from Gene Expression Omnibus (GEO), The Cancer Genome Atlas (TCGA), and peer-reviewed journals. A meta-analysis was carried out to comprehensively explore the relationship between miR-375-3p expression level and clinicopathological features of HNSCC. And summary receiver operating characteristic (SROC) curve analysis was applied for evaluating disease diagnosis value of miR-375-3p. In addition, a biological pathway analysis was also performed to assess the possible molecular mechanism of miR-375-3p in HNSCC. RESULTS: A total of 24 available records and references were added into analysis. The overall pooled meta-analysis outcome revealed a relatively lower expression level of miR-375-3p in HNSCC specimens than that in non-cancerous controls (P < 0.001). And SROC curve analysis showed that the pooled area under the SROC curve (AUC) was 0.90 (95%CI: 0.88-0.93). In addition, biological pathway analysis indicated that LAMC1, EDIL3, FN1, VEGFA, IGF2BP2, and IGF2BP3 maybe the latent target genes of miR-375-3p, which were greatly enriched in the pathways of beta3 integrin cell surface interactions and the binding of RNA via the insulin-like growth factor-2 mRNA-binding protein (IGF2BPs/IMPs/VICKZs). CONCLUSION: MiR-375-3p expression clearly decreased in HNSCC samples compared with non-cancerous controls. Meanwhile, miR-375-3p may serve as a tumor suppressor via regulating tumor-related genes LAMC1, EDIL3, FN1, VEGFA, IGF2BP2, and IGF2BP3 in HNSCC.