Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38838264

RESUMO

Chiral atomically precise metal clusters, known for their remarkable chiroptical properties, hold great potential for applications in chirality recognition. However, advancements in this field have been constrained by the limited exploration of host-guest chemistry, involving metal clusters. This study reports the synthesis of a chiral Cu16(C2B10H10S2)8 (denoted as Cu16@CB8, where C2B10H12S2H2 = 9,12-(HS)2-1,2-closo-carborane) cluster by an achiral carboranylthiolate ligand. The chiral R-/S-Cu16@CB8 cluster features chiral cavities reminiscent of cyclodextrins, which are surrounded by carborane clusters, yet they crystallize in a racemate. These cyclodextrin-like cavities demonstrated the specific recognition of amino acids, as indicated by the responsive output of circular dichroism and circularly polarized luminescence signals of Cu16 moieties of the Cu16@CB8 cluster. Notably, a quantitative chiroptical analysis of amino acids in a short time and a concomitant deracemization of Cu16@CB8 were achieved. Density functional tight-binding molecular dynamics simulation and noncovalent interaction analysis further unraveled the great importance of the cavities and binding sites for chiral recognition. Dipeptide, tripeptide, and polypeptide containing the corresponding amino acids (Cys, Arg, or His residues) display the same chiral recognition, showing the generality of this approach. The functional synergy of dual clusters, comprising carborane and metal clusters, is for the first time demonstrated in the Cu16@CB8 cluster, resulting in the valuable quantification of the enantiomeric excess (ee) value of amino acids. This work opens a new avenue for chirality sensors based on chiral metal clusters with unique chiroptical properties and inspires the development of carborane clusters in host-guest chemistry.

2.
J Am Chem Soc ; 143(16): 6048-6053, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33871986

RESUMO

We report a new enantiomeric pair of superatomic silver clusters, R/S-Ag17, prepared from chiral alkynyl ligands. R-Ag17 and S-Ag17 possess C3 symmetry and emit near-infrared (NIR) light with a quantum yield (QY) of 8.0% under ambient condition as well as NIR circularly polarized luminescence (CPL) as a result of the chirality of the excited states. Both experiments and theoretical calculations indicate for the first time that the CPL originates from transitions between superatomic 1Pz (along the C3 axis) and 1S orbitals. This work opens a new avenue for CPL-active metal nanoclusters by utilizing chiral alkynyl ligands and enlightens the chirality transfer from chiral protecting ligands to superatomic states in metal clusters.

3.
J Am Chem Soc ; 143(32): 12439-12444, 2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34355894

RESUMO

Here we report a neutral fullerene-like core-shell homosilver Ag13@Ag20 nanocluster that is fully protected by an achiral bidentate thiolate ligand (9,12-dimercapto-1,2-closo-carborane, C2B10H10S2H2), which crystallizes in centrosymmetric space group R3̅. Continuous Cu doping in the dodecahedral shell first induced symmetry breaking to generate chiral Ag13@Ag20-nCun (6 ≥ n ≥ 2) containing two acetonitrile ligands in space group P212121, and then produced symmetric all-thiolated Ag13@Ag20-nCun (20 ≥ n ≥ 13) in the higher space group Im3̅. The selectively copper-doped Ag13@Ag20-nCun (6 ≥ n ≥ 2) cluster has its structure reorganized to a lower symmetry that shows chiroptical activity. Moreover, structural distortion of Ag13@Ag20-nCun (6 ≥ n ≥ 2) further expanded in chiral R-/S-propylene oxide, which induced a more prominent core-based CD response. This work revealed a novel mechanism of chirality generation at the atomic level through asymmetric shell-doping of metal nanoclusters, which provides new insight into the origin of chirality in inorganic nanostructures.

4.
Adv Sci (Weinh) ; 11(23): e2401861, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38569464

RESUMO

Hypergolic propellants rely on fuel and oxidizer that spontaneously ignite upon contact, which fulfill a wide variety of mission roles in launch vehicles and spacecraft. Energy-rich carboranes are promising hypergolic fuels, but triggering their energy release is quite difficult because of their ultrastable aromatic cage structure. To steer the development of carborane-based high-performance hypergolic material, carboranylthiolated compounds integrated with atomically precise copper clusters are presented, yielding two distinct isomers, Cu14B-S and Cu14C-S, both possessing similar ligands and core structures. With the migration of thiolate groups from carbon atoms to boron atoms, the ignition delay (ID) time shortened from 6870 to 3 ms when contacted with environmentally benign oxidizer high-test peroxide (HTP, with a H2O2 concentration of 90%). The extraordinarily short ignition ID time of Cu14B-S is ranking among the best of HTP-active hypergolic materials. The experimental and theoretical findings reveal that benefitting from the migration of thiolate groups, Cu14B-S, characterized by an electron-rich metal kernel, displays enhanced reducibility and superior charge transfer efficiency. This results in exceptional activation rates with HTP, consequently inducing carborane combustion and the simultaneous release of energy. This fundamental investigation shed light on the development of advanced green hypergolic propulsion systems.

5.
Nanoscale ; 16(19): 9361-9366, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38660780

RESUMO

Controlled synthesis of metal clusters through minor changes in surface ligands holds significant interest because the corresponding entities serve as ideal models for investigating the ligand environment's stereochemical and electronic contributions that impact the corresponding structures and properties of metal clusters. In this work, we obtained two Ag(0)-containing nanoclusters (Ag17 and Ag32) with near-infrared emissions by regulating phosphine auxiliary ligands. Ag17 and Ag32 bear similar shells wherein Ag17 features a trigonal bipyramid Ag5 kernel while Ag32 has a bi-icosahedral interpenetrating an Ag20 kernel. Ag17 and Ag32 showed a near-infrared emission (NIR) of around 830 nm. Benefiting from the rigid structure, Ag17 displayed a more intense near-infrared emission than Ag32. This work provides new insight into the construction of novel superatomic silver nanoclusters by regulating phosphine ligands.

6.
ACS Nano ; 16(11): 18789-18794, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36286585

RESUMO

Cocrystals containing distinct atom-precise metal nanoclusters (NCs) provide an opportunity to elucidate the crystallization process, architectural complexity, and newly emerging properties of condensed-state metal NC-assembled materials. However, the controllable preparation of such cocrystals is still challenging. Herein, we present a modular strategy to cocrystallize two customized carboranylthiolate-protected copper NCs, Cu14(C2B10H10S2)6(CH3CN)6 (Cu14) and Cu16(C2B10H10S2)8 (Cu16), which adopt matched surface patterns by host-guest chemistry. The Cu14·Cu16 cocrystals show integrated UV-vis adsorption and dual emission stemming from the Cu14 and Cu16 NCs. Moreover, the component NCs are selectively doped by gold atoms, which is a promising way to incorporate diverse properties of metal cluster-based cocrystals. This work not only provides a copper NC-based cocrystal for a profound study on a condensed-state copper nanomaterial but also develops a modular strategy for the cocrystallization of metal NCs.

7.
Chem Commun (Camb) ; 58(52): 7321-7324, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35686610

RESUMO

A new Ag36 nanocluster with a closed electronic structure and eight valence electrons is reported, which has a similar structure to that of an open-shell Ag34 nanocluster with three valence electrons, except that in the shell two (Ag-PPh3)+ cations replace two S2- anions specifically. The fine structural modulation leads to various levels of activity for singlet oxygen photogeneration due to the distinct optical gaps of the nanoclusters.


Assuntos
Elétrons , Prata , Prata/química , Enxofre
8.
Adv Mater ; 34(31): e2203734, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35681250

RESUMO

Alloying is an efficient chemistry to tailor the properties of metal clusters. As a class of promising radiosensitizers, most previously reported metal clusters exhibit unitary function and cannot overcome radioresistance of hypoxic tumors. Here, atomically precise alloy clusters Pt2 M4 (M = Au, Ag, Cu) are synthesized with bright luminescence and adequate biocompatibility, and their composition-dependent enzyme mimicking activity and radiosensitizing effect is explored. Specifically, only the Pt2 Au4 cluster displays catalase-like activity, while the others do not have clusterzyme properties, and its radiosensitizing effect is the highest among all the alloy clusters tested. By taking advantage of the sustainable production of O2 via the decomposition of endogenous H2 O2 , the Pt2 Au4 cluster modulates tumor hypoxia as well as increases the efficacy of radiotherapy. This work thus advances the cluster alloying strategy to produce multifunctional therapeutic agents for improving hypoxic tumor therapy.


Assuntos
Neoplasias , Radiossensibilizantes , Ligas , Humanos , Hipóxia , Neoplasias/radioterapia , Radiossensibilizantes/farmacologia , Hipóxia Tumoral
9.
Appl Opt ; 49(23): 4472-8, 2010 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-20697451

RESUMO

We present a novel idea to construct a solar concentrator with a circular prism array. FRED ray tracing software is used to evaluate our proposed structure in which the incident light rays are deflected by total internal reflection and the optical energy is concentrated and collected at the center. The light rays to be collected travel within the disk once they enter the module, saving the space that is reserved for ray propagation in other concentrators. Simulations for both single-wavelength and broadband light are performed. Our device can be used alone or serve as a secondary concentrator when combined with another solar-energy focusing module. For the proposed concentrator, an optical efficiency of 90% (single wavelength, 0.87 microm) is achieved under normal incidence and with antireflection coating, and a high geometric concentration ratio of 93 is reached. When combined with a Fresnel lens, which is used as a primary concentrator, the overall efficiency and concentration ratio can reach 92% (single wavelength, 0.87 microm) and 837, respectively.

10.
ACS Cent Sci ; 6(11): 1971-1976, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33274274

RESUMO

Despite significant progress achieved in the preparation of chiral nanoparticles, the enantioseparation of racemates still presents a big challenge in nanomaterial research. Herein, we report the synthesis and structural characterization of racemic anisotropic nanocluster Ag30(C2B10H9S3)8Dppm6 (Ag 30 -rac), which is protected by mixed carboranetrithiolate and phosphine ligands. Spontaneous self-resolution of the racemates was realized through conglomerate crystallization in dimethylacetamide (DMAc). The homochiral nanoclusters in the racemic conglomerates adopt enantiomeric helical self-assemblies (R/L-Ag 30 ). Diverse noncovalent interactions as the driving force in directing superstructure packing were elucidated in detail. Furthermore, the nanoclusters show red luminescence in both solid and solution states, and the racemic conglomerates display a mirror-image CPL response. This work provides atom-precise helical nanoparticle superstructures that facilitate an in-depth understanding of the helical-assembly mechanism.

11.
ACS Appl Mater Interfaces ; 7(28): 15129-37, 2015 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-26148216

RESUMO

With SnO typically regarded as a p-type oxide semiconductor, an oxide semiconductor formed by hybrid phases of mainly SnO and a small amount of SnO2 with an average [O]/[Sn] ratio of 1.1 was investigated as a channel material for n-type thin-film transistors (TFTs). Furthermore, an appropriate number of oxygen vacancies were introduced into the oxide during annealing at 400 °C in ambient N2, making both SnO and SnO2 favorable for current conduction. By using high-κ ZrO2 with a capacitance equivalent thickness of 13.5 nm as the gate dielectric, the TFTs processed at 400 °C demonstrated a steep subthreshold swing (SS) of 0.21 V/dec, and this can be ascribed to the large gate capacitance along with a low interface trap density (Dit) value of 5.16 × 10(11) cm(-2) eV(-1). In addition, the TFTs exhibit a relatively high electron mobility of 7.84 cm(2)/V·s, high ON/OFF current ratios of up to 2.5 × 10(5), and a low gate leakage current at a low operation voltage of 3 V. The TFTs also prove its high reliability performance by showing negligible degradation of SS and threshold voltage (VT) against high field stress (-10 MV/cm). When 3% oxygen annealing is combined with a thinner channel thickness, TFTs with even higher ION/IOFF ratios exceeding 10(7) can also be obtained. With these promising characteristics, the overall performance of the TFTs displays competitive advantages compared with other n-type TFTs formed on binary or even some multicomponent oxide semiconductors and paves a promising and economic avenue to implement an n-type oxide semiconductor without doping for production-worthy TFT technology. Most importantly, when combined with the typical SnO-based p-type oxide semiconductor, it would usher in a new era in achieving high-performance complementary metal oxide semiconductor circuits by using the same SnO-based oxide semiconductor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA