Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 17(9): 1720-1736, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29871872

RESUMO

Proteins, as the major executer for cell progresses and functions, its abundance and the level of post-translational modifications, are tightly monitored by regulators. Genetic perturbation could help us to understand the relationships between genes and protein functions. Herein, to explore the impact of the genome-wide interruption on certain protein, we developed a cell lysate microarray on kilo-conditions (CLICK) with 4837 knockout (YKO) and 322 temperature-sensitive (ts) mutant strains of yeast (Saccharomyces cerevisiae). Taking histone marks as examples, a general workflow was established for the global identification of upstream regulators. Through a single CLICK array test, we obtained a series of regulators for H3K4me3, which covers most of the known regulators in S. cerevisiae We also noted that several group of proteins are involved in negatively regulation of H3K4me3. Further, we discovered that Cab4p and Cab5p, two key enzymes of CoA biosynthesis, play central roles in histone acylation. Because of its general applicability, CLICK array could be easily adopted to rapid and global identification of upstream protein/enzyme(s) that regulate/modify the level of a protein or the posttranslational modification of a non-histone protein.


Assuntos
Redes Reguladoras de Genes , Código das Histonas/genética , Saccharomyces cerevisiae/genética , Acil Coenzima A/metabolismo , Acilação , Química Click , Histonas/metabolismo , Lisina/metabolismo , Metilação , Modelos Biológicos , Mutação/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA