Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(13): 16408-16417, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38502312

RESUMO

The widespread application of proton exchange membrane water electrolyzers (PEMWEs) is hampered by insufficient lifetime caused by degradation of the anode catalyst layer (ACL). Here, an important degradation mechanism has been identified, attributed to poor mechanical stability causing the mass transfer channels to be blocked by ionomers under operating conditions. By using liquid-phase atomic force microscopy, we directly observed that the ionomers were randomly distributed (RD) in the ACL, which occupied the mass transfer channels due to swelling, creeping, and migration properties. Interestingly, we found that alternating treatments of the ACL in different water/temperature environments resulted in forming three-dimensional ionomer networks (3D INs) in the ACL, which increased the mechanical strength of microstructures by 3 times. Benefitting from the efficient and stable mass transfer channels, the lifetime was improved by 19 times. A low degradation rate of approximately 3.0 µV/h at 80 °C and a high current density of 2.0 A/cm2 was achieved on a 50 cm2 electrolyzer. These data demonstrated a forecasted lifetime of 80 000 h, approaching the 2026 DOE lifetime target. This work emphasizes the importance of the mechanical stability of the ACL and offers a general strategy for designing and developing a durable PEMWE.

2.
Adv Mater ; 36(28): e2402780, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38661112

RESUMO

The high cost of proton exchange membrane water electrolysis (PEMWE) originates from the usage of precious materials, insufficient efficiency, and lifetime. In this work, an important degradation mechanism of PEMWE caused by dynamics of ionomers over time in anode catalyst layer (ACL), which is a purely mechanical degradation of microstructure, is identified. Contrary to conventional understanding that the microstructure of ACL is static, the micropores are inclined to be occupied by ionomers due to the localized swelling/creep/migration, especially near the ACL/PTL (porous transport layer) interface, where they form transport channels of reactant/product couples. Consequently, the ACL with increased ionomers at PTL/ACL interface exhibit rapid and continuous degradation. In addition, a close correlation between the microstructure of ACL and the catalyst ink is discovered. Specifically, if more ionomers migrate to the top layer of the ink, more ionomers accumulate at the ACL/PEM interface, leaving fewer ionomers at the ACL/PTL interface. Therefore, the ionomer distribution in ACL is successfully optimized, which exhibits reduced ionomers at the ACL/PTL interface and enriches ionomers at the ACL/PEM interface, reducing the decay rate by a factor of three when operated at 2.0 A cm-2 and 80 °C. The findings provide a general way to achieve low-cost hydrogen production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA