Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 128
Filtrar
1.
Environ Res ; 241: 117612, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37951380

RESUMO

This study systematically investigated the variable main electrooxidation mechanism of chlorophene (CP) and dichlorophen (DCP) with the change of reaction conditions at Ti4O7 anode operated in batch and reactive electrochemical membrane (REM) modes. Significant degradation of CP and DCP was observed, that is, CP exhibited greater removal efficiency in batch mode at 0.5-3.5 mA cm-2 and REM operation (0.5 mA cm-2) with a permeate flow rate of 0.85 cm min-1 under the same reaction conditions, while DCP exhibited a faster degradation rate with the increase of current density in REM operation. Density functional theory (DFT) simulation and electrochemical performance tests indicated that the electrooxidation efficiency of CP and DCP in batch mode was primarily affected by the mass transfer rates. And the removal efficiency when anodic potentials were less than 1.7 V vs SHE in REM operation was determined by the activation energy for direct electron transfer (DET) reaction, however, the adsorption function of CP and DCP on the Ti4O7 anode became a dominant factor in determining the degradation efficiency with the further increase of anodic potential due to the disappeared activation barrier. In addition, the degradation pathways of CP and DCP were proposed according to intermediate products identification and frontier electron densities (FEDs) calculation, the acute toxicity of CP and DCP were also effectively decreased during both batch and REM operations.


Assuntos
Diclorofeno , Poluentes Químicos da Água , Adsorção , Oxirredução
2.
Environ Sci Technol ; 57(36): 13625-13634, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37650769

RESUMO

In this work, we demonstrate for the first time the abatement of sulfamethoxazole (SMX) induced by stabilized ortho-semiquinone radicals (o-SQ•-) in the MnO2-mediated system in the presence of humic acid. To evaluate the performance of different MnO2/mediator systems, 16 mediators are examined for their effects on MnO2 reactions with SMX. The key role of the bidentate Mn(II)-o-SQ• complex and MnO2 surface in stabilizing SQ•- is revealed. To illustrate the formation of the Mn(II)-o-SQ• complex, electron spin resonance, cyclic voltammetry, and mass spectra were used. To demonstrate the presence of o-SQ• on the MnO2 surface, EDTA was used to quench Mn(II)-o-SQ•. The high stability of o-SQ•- on the MnO2 surface is attributed to the higher potential of o-SQ•- (0.9643 V) than the MnO2 surface (0.8598 V) at pH 7.0. The SMX removal rate constant by different stabilized o-SQ• at pH 7.0 ranges from 0.0098 to 0.2252 min-1. The favorable model is the rate constant ln (kobs, 7.0) = 6.002EHOMO(o-Qred) + 33.744(ELUMO(o-Q) - EHOMO(o-Qred)) - 32.800, whose parameters represent the generation and reactivity of o-SQ•, respectively. Moreover, aniline and cystine are competitive substrates for SMX in coupling o-SQ•-. Due to the abundance of humic constituents in aquatic environments, this finding sheds light on the low-oxidant-demand, low-carbon, and highly selective removal of sulfonamide antibiotics.


Assuntos
Substâncias Húmicas , Sulfametoxazol , Manganês , Óxidos , Compostos de Manganês
3.
Environ Sci Technol ; 2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36622151

RESUMO

Per- and polyfluoroalkyl acids (PFAAs) including polyfluoroalkyl carboxylic acids and polyfluoroalkyl sulfonic acids are a large category of crucial environmental pollutants of global concern. Besides known PFAAs, numerous unknown species may exist in the environment, urgently needing discovery and characterization. This study implemented nontarget analysis for a group of novel PFAA pollutants, viz., iodinated PFAAs (I-PFAAs) in wastewater from a fluorochemical manufacturing park by liquid chromatography-high-resolution mass spectrometry in combination with an iodine-specific data-processing algorithm. The algorithm took into account the diagnostic fragment iodine ion (I-) together with carbon and sulfur isotopologue distributions. In total, 18 I-PFAA formulas involving 21 congeners were identified. Semiquantification was conducted, and the total concentrations of I-PFAAs were 1.9-274.7 µg/L, indicating severe pollution of I-PFAAs in the wastewater. The determined concentrations along with predicted environmental behaviors and toxicities demonstrate that I-PFAAs merit further in-depth investigation. The analytical method including the instrumental analysis and data-processing algorithm can be extended to screening and identification of I-PFAAs in other matrices. Furthermore, the analysis results for the first time provide recognition on the occurrence, distribution features, and pollution status of I-PFAAs in the environment.

4.
Environ Sci Technol ; 57(44): 17099-17109, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37878998

RESUMO

Poly- and perfluoroalkyl acids (PFAAs) are a large family of widespread contaminants of worldwide concern and well-known as "forever chemicals". Direct emission of PFAAs from the fluorochemical industry is a crucial source of PFAA pollutants in the environment. This study implemented nontarget analysis and comprehensive characterization for a category of new PFAA contaminants, i.e., iodinated PFAAs (IPFAAs), in fluorochemical industry wastewater and relevant contaminated river water by liquid chromatography-high-resolution mass spectrometry with a cascade precursor ion exclusion (PIE) strategy and in-house developed data extraction and processing algorithms. A total of 26 IPFAAs (including 2 isomers of an IPFAA) were found and identified with tentative molecular structures. Semiquantification of the IPFAAs was implemented, and the total concentrations of IPFAAs were 0.16-285.52 and 0.15-0.17 µg/L in wastewater and river water, respectively. The high concentrations in association with the predicted ecotoxicities and environmental behaviors demonstrate that these IPFAAs are worthy of more concern and further in-depth research. The cascade PIE strategy along with the data extraction and processing algorithms can be extended to nontarget analysis for other pollutants beyond IPFAAs. The nontarget identification and characterization outcomes provide new understanding on the environmental occurrence and pollution status of IPFAAs from a comprehensive perspective.


Assuntos
Poluentes Ambientais , Fluorocarbonos , Poluentes Químicos da Água , Águas Residuárias , Rios/química , Fluorocarbonos/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Poluentes Ambientais/análise , Água
5.
Environ Sci Technol ; 56(12): 7412-7425, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35638921

RESUMO

Traditional composting is a well-suited biotechnology for on-farm management of livestock manure (LM) but still leads to the release of toxic micropollutants and imbalance of nutrients. One in situ exoenzyme-assisted composting has shown promise to ameliorate the agronomical quality of end products by improving humification and polymerization. The naturally occurring extracellular laccase from microorganisms belongs to a multicopper phenoloxidase, which is verified for its versatility to tackle micropollutants and conserve organics through the reactive radical-enabled decomposition and polymerization channels. Laccase possesses an indispensable relationship with humus formation during LM composting, but its potential applications for the harmless disposal and resource utilization of LM have until now been overlooked. Herein, we review the extracellular laccase-aided humification mechanism and its optimizing strategy to maintain enzyme activity and in situ production, highlighting the critical roles of laccase in treating micropollutants and preserving organics during LM composting. Particularly, the functional effects of the formed humification products by laccase-amended composting on plant growth are also discussed. Finally, the future perspectives and outstanding questions are summarized. This critical review provides fundamental insights into laccase-boosted humification that ameliorates the quality of end products in LM composting, which is beneficial to guide and advance the practical applications of exoenzyme in humification remediation, the carbon cycle, and agriculture protection.


Assuntos
Compostagem , Animais , Substâncias Húmicas/análise , Lacase , Gado , Esterco , Solo
6.
Crit Rev Biotechnol ; 41(7): 969-993, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33818232

RESUMO

This is the first comprehensive overview of laccase-triggered anabolism from fundamental theory to biotechnology applications. Laccase is a typical biological oxidordeuctase that induces the one-electronic transfer of diverse substrates for engendering four phenoxy radicals with concomitant reduction of O2 into 2H2O. In vivo, laccase can participate in anabolic processes to create multifarious functional biopolymers such as fungal pigments, plant lignins, and insect cuticles, using mono/polyphenols and their derivatives as enzymatic substrates, and is thus conducive to biological tissue morphogenesis and global carbon storage. Exhilaratingly, fungal laccase has high redox potential (E° = 500-800 mV) and thermodynamic efficiency, making it a remarkable candidate for utilization as a versatile catalyst in the green and circular economy. This review elaborates the anabolic mechanisms of laccase in initiating the polymerization of natural phenolic compounds and their derivatives in vivo via radical-based self/cross-coupling. Information is also presented on laccase immobilization engineering that expands the practical application ranges of laccase in biotechnology by improving the enzymatic catalytic activity, stability, and reuse rate. Particularly, advances in biotechnology applications in vitro through fungal laccase-triggered macromolecular biosynthesis may provide a key research direction beneficial to the rational design of green chemistry.


Assuntos
Biotecnologia , Lacase , Catálise , Fungos/metabolismo , Lacase/metabolismo , Lignina/metabolismo , Oxirredução
7.
Environ Sci Technol ; 55(4): 2597-2607, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33502168

RESUMO

Defect engineering in an electrocatalyst, such as doping, has the potential to significantly enhance its catalytic activity and stability. Herein, we report the use of a defect engineering strategy to enhance the electrochemical reactivity of Ti4O7 through Ce3+ doping (1-3 at. %), resulting in the significantly accelerated interfacial charge transfer and yielding a 37-129% increase in the anodic production of the hydroxyl radical (OH•). The Ce3+-doped Ti4O7 electrodes, [(Ti1-xCex)4O7], also exhibited a more stable electrocatalytic activity than the pristine Ti4O7 electrode so as to facilitate the long-term operation. Furthermore, (Ti1-xCex)4O7 electrodes were also shown to effectively mineralize perfluorooctanesulfonate (PFOS) in electrooxidation processes in both a trace-concentration river water sample and a simulated preconcentration waste stream sample. A 3 at. % dopant amount of Ce3+ resulted in a PFOS oxidation rate 2.4× greater than that of the pristine Ti4O7 electrode. X-ray photoelectron spectroscopy results suggest that Ce3+ doping created surficial oxygen vacancies that may be responsible for the enhanced electrochemical reactivity and stability of the (Ti1-xCex)4O7 electrodes. Results of this study provide insights into the defect engineering strategy for boosting the electrochemical performance of the Ti4O7 electrode with a robust reactivity and stability.


Assuntos
Dopagem Esportivo , Poluentes Químicos da Água , Ácidos Alcanossulfônicos , Eletrodos , Fluorocarbonos , Titânio , Poluentes Químicos da Água/análise
8.
Phys Rev Lett ; 124(25): 251101, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32639789

RESUMO

The detection of binary black hole coalescences by LIGO and Virgo has aroused the interest in primordial black holes (PBHs), because they could be both the progenitors of these black holes and a compelling candidate of dark matter (DM). PBHs are formed soon after the enhanced scalar perturbations reenter horizon during the radiation dominated era, which would inevitably induce gravitational waves as well. Searching for such scalar induced gravitational waves (SIGWs) provides an elegant way to probe PBHs. We perform the first direct search for the signals of SIGWs accompanying the formation of PBHs in the North American Nanohertz Observatory for Gravitational waves (NANOGrav) 11-year dataset. No statistically significant detection has been made, and hence we place a stringent upper limit on the abundance of PBHs at 95% confidence level. In particular, less than one part in a million of the total DM mass could come from PBHs in the mass range of [2×10^{-3},7×10^{-1}] M_{⊙}.

9.
Environ Sci Technol ; 53(8): 4255-4264, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30912931

RESUMO

Sulfate radical (SO4•-)-based advanced oxidation is a viable in situ remediation technology for degrading organic contaminants in the subsurface. In this study, we demonstrated that SO4•- could induce the activation of nitrite, an anion commonly present in the subsurface environment, leading to the formation of nitrophenolic byproducts. Fourier-transform infrared spectroscope and 15N nuclear magnetic resonance analysis revealed that the inorganic nitrite was incorporated into natural organic matter (NOM) to form organic nitrogen upon SO4•- oxidation. Nitrophenolic byproducts, including 2-hydroxy-5-nitrobenzoic acid, 4-nitrophenol, and 2,4-dinitrophenol, were identified using high-resolution mass spectrometry in combination with a 15N labeling technique. Formation of nitrated byproducts was ascribed to the scavenging of SO4•- by nitrite, which not only generated the nitrating agent NO2• but also inhibited the degradation of organic compounds, making them more available to the reactions with NO2•. The phenolic moieties in NOM served as the main reactive sites for NO2• attack. The nitration begins with H abstraction on the phenoxy oxygen, followed by the addition of another NO2• to its ortho or para site. Decarboxylation followed by NO2• addition can also generate nitrophenolic byproducts. To the best of our knowledge, this is the first study reporting the nitration of NOM and formation of toxic nitrophenolic byproducts during SO4•--based oxidation. It sheds light on the potential risks of this technology in subsurface remediation practices.


Assuntos
Temperatura Alta , Nitritos , Nitratos , Compostos Orgânicos , Oxirredução
10.
Environ Sci Technol ; 53(24): 14528-14537, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31730354

RESUMO

This study investigated the degradation of perfluorooctanesulfonate (PFOS) in a reactive electrochemical membrane (REM) system in which a porous Magnéli phase titanium suboxide ceramic membrane served simultaneously as the anode and the membrane. Near complete removal (98.30 ± 0.51%) of PFOS was achieved under a cross-flow filtration mode at the anodic potential of 3.15 V vs standard hydrogen electrode (SHE). PFOS removal efficiency during the REM operation is much greater than that of the batch operation mode under the same anodic potential. A systematic reaction rate analysis in combination with electrochemical characterizations quantitatively elucidated the enhancement of PFOS removal in REM operation in relation to the increased electroactive surface area and improved interphase mass transfer. PFOS appeared to undergo rapid mineralization to CO2 and F-, with only trace levels of short-chain perfluorocarboxylic acids (PFCAs, C4-C8) identified as intermediate products. Density functional theory (DFT) simulations and experiments involving free radical scavengers indicated that PFOS degradation was initiated by direct electron transfer (DET) on anode to yield PFOS free radicals (PFOS•), which further react with hydroxyl radicals that were generated by water oxidation and adsorbed on the anode surface (•OHads). The attack of •OHads is essential to PFOS degradation, because, otherwise, PFOS• may react with water and revert to PFOS.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Técnicas Eletroquímicas , Eletrodos , Oxirredução , Titânio
11.
Phys Rev Lett ; 120(19): 191102, 2018 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-29799261

RESUMO

Advanced LIGO's discovery of gravitational-wave events is stimulating extensive studies on the origin of binary black holes. Assuming that the gravitational-wave events can be explained by binary primordial black hole mergers, we utilize the upper limits on the stochastic gravitational-wave background given by Advanced LIGO as a new observational window to independently constrain the abundance of primordial black holes in dark matter. We show that Advanced LIGO's first observation run gives the best constraint on the primordial black hole abundance in the mass range 1M_{⊙}≲M_{PBH}≲100M_{⊙}, pushing the previous microlensing and dwarf galaxy dynamics constraints tighter by 1 order of magnitude. Moreover, we discuss the possibility to detect the stochastic gravitational-wave background from primordial black holes, in particular from subsolar mass primordial black holes, by Advanced LIGO in the near future.

12.
Environ Sci Technol ; 52(18): 10617-10626, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30146871

RESUMO

Perfluorooctanesulfonate (PFOS) is a compound that has wide applications with extreme persistence in the environment and the potential to bioaccumulate, and could induce adverse effects to ecosystems. We investigated the degradation of PFOS by laccase-induced enzyme catalyzed oxidative humification reactions (ECOHRs) using 1-hydroxybenzotriazole (HBT) as a mediator. Approximately 59% of PFOS was transformed over 162 days of incubation, and the reaction appeared to follow a pseudo-first-order model with reaction rate constant of 0.0066/ d ( r2 = 0.87) under one condition tested. Using differential absorption spectra and theoretical simulation, we elucidated the interaction between Cu2+/Mg2+ and PFOS, and proposed that Cu2+ and Mg2+ could serve as a bridge to bring the negatively charged PFOS and laccase to proximity, thus increasing the chance of radicals that are released from laccase to reach and react with PFOS. In addition, density functional theory modeling showed that PFOS complexation to the metal ions could unlock its helical configuration and decrease the C-C bond energy of PFOS. These changes allow the attack of PFOS C-C backbone by radicals to become easier. On the basis of products identification, we proposed that direct attack of PFOS by the HBT radical initiated the free radical chain reaction processes and led to the formation of fluoride and partially fluorinated compounds. These results suggest that ECOHR is a potential pathway by which PFOS could be degraded in the environment, and it may make a viable approach to remediate PFOS contamination via amendment of appropriate enzymes and mediators.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Ecossistema , Lacase
13.
Environ Sci Technol ; 52(5): 2945-2952, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29405708

RESUMO

Laccase is a multicopper oxidase containing four coppers as reaction sites, including one type 1, one type 2, and two type 3. We here provide the first experimental data showing that As (III) can be effectively removed from water and transformed to As (V) through reactions mediated by laccase with the presence of oxygen. To this end, the As (III) removal, As (V) yields, total protein, active laccase, and copper concentrations in the aqueous phase were determined, respectively. Additionally, electron paramagnetic resonance spectra and UV-vis spectra were applied to probe possible structural changes of the laccase during the reaction. The data offer the first evidence that laccase can be inactivated by As (III) attack thus leading to the release of type 2 copper. The released copper has no reactivity with the As (III). These findings provide new ideas into a significant pathway likely to master the environmental transformation of arsenite, and advance the understanding of laccase inactivation mechanisms, thus providing a foundation for optimization of enzyme-based processes and potential development for removal and remediation of arsenite contamination in the environment.


Assuntos
Lacase , Água , Domínio Catalítico , Cobre , Espectroscopia de Ressonância de Spin Eletrônica
14.
Environ Sci Technol ; 50(10): 5060-7, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27077814

RESUMO

Sulfate radical-based advanced oxidation processes (SR-AOPs) are considered as viable technologies to degrade a variety of recalcitrant organic pollutants. This study demonstrates that o-phthalic acid (PA) could lead to the formation of brominated disinfection byproducts (DBPs) in SR-AOPs in the presence of bromide. However, PA does not generate DBPs in conventional halogenation processes. We found that this was attributed to the formation of phenolic intermediates susceptible to halogenation, such as salicylic acid through the oxidation of PA by SO4(•-). In addition, reactive bromine species could be generated from Br(-) oxidation by SO4(•-). Similar in situ generation of phenolic functionalities likely occurred by converting carboxylic substituents on aromatics to hydroxyl when natural organic matter (NOM) was exposed to trace level SO4(•-). It was found that such structural reconfiguration led to a great increase in the reactivity of NOM toward free halogen and, thus, its DBP formation potential. After a surface water sample was treated with 0.1 µM persulfate for 48 h, its potential to form chloroform, trichloroacetic acid, and dichloroacetic acid increased from 197.8, 54.3, and 27.6 to 236.2, 86.6, and 57.6 µg/L, respectively. This is the first report on possible NOM reconfiguration upon exposure to low-level SO4(•-) that has an implication in DBP formation. The findings highlight potential risks associated with SO4(•-)-based oxidation processes and help to avoid such risks in design and operation.


Assuntos
Desinfecção , Poluentes Químicos da Água , Brometos/química , Bromo , Halogenação , Purificação da Água
15.
Carbon N Y ; 109: 566-574, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-28694548

RESUMO

While graphene has substantial commercial promise, numerous aspects regarding its ecological effects such as its potential for bioaccumulation are not well known. 14C-labeled few layer graphene (FLG) was dispersed in artificial freshwater and uptake of FLG by Limnodrilus hoffmeisteri, an oligochaete, was assessed. After exposure for 36 h to a 1 mg/L FLG suspension, the FLG body burden in the organism was nearly 60 ng/mg (on a dry mass basis). Multiple characterization results confirmed that the proteins secreted by the organisms during the exposure period coated the FLG, thus increasing its stability and decreasing its size in suspension. Uptake behaviors of Eisenia foetida exposed to FLG and protein-coated FLG at concentrations of approximately 1 mg/kg or to Daphnia magna at 100 µg/L were also quantified. Protein-coated FLG demonstrated different bioaccumulation behaviors for both organisms compared to uncoated FLG, with the FLG body burden in E. foetida increased but that in D. magna reduced. The data provide the first evidence that the proteins secreted by Limnodrilus hoffmeisteri after exposure to FLG can coat FLG, thus increasing the aqueous stability of FLG, decreasing its size, and changing its bioaccumulation potential.

16.
Int J Mol Sci ; 17(6)2016 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-27240345

RESUMO

Two CHI genes from Chitinolyticbacter meiyuanensis SYBC-H1 encoding chitinases were identified and their protein 3D structures were predicted. According to the amino acid sequence alignment, CHI1 gene encoding 166 aa had a structural domain similar to the GH18 type II chitinase, and CHI2 gene encoding 383 aa had the same catalytic domain as the glycoside hydrolase family 19 chitinase. In this study, CHI2 chitinase were expressed in Escherichia coli BL21 cells, and this protein was purified by ammonium sulfate precipitation, DEAE-cellulose, and Sephadex G-100 chromatography. Optimal activity of CHI2 chitinase occurred at a temperature of 40 °C and a pH of 6.5. The presence of metal ions Fe(3+), Fe(2+), and Zn(2+) inhibited CHI2 chitinase activity, while Na⁺ and K⁺ promoted its activity. Furthermore, the presence of EGTA, EDTA, and ß-mercaptoethanol significantly increased the stability of CHI2 chitinase. The CHI2 chitinase was active with p-NP-GlcNAc, with the Km and Vm values of 23.0 µmol/L and 9.1 mM/min at a temperature of 37 °C, respectively. Additionally, the CHI2 chitinase was characterized as an N-acetyl glucosaminidase based on the hydrolysate from chitin. Overall, our results demonstrated CHI2 chitinase with remarkable biochemical properties is suitable for bioconversion of chitin waste.


Assuntos
Quitinases/química , Quitinases/genética , Clonagem Molecular/métodos , Neisseriaceae/isolamento & purificação , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Quitinases/metabolismo , Escherichia coli/genética , Cinética , Modelos Moleculares , Neisseriaceae/química , Neisseriaceae/enzimologia , Neisseriaceae/genética , Filogenia , Estabilidade Proteica , Estrutura Secundária de Proteína , Análise de Sequência de Proteína , Microbiologia do Solo , Homologia Estrutural de Proteína
17.
Environ Sci Technol ; 49(14): 8550-7, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26147794

RESUMO

Laccases are a type of extracellular enzyme produced by fungi, bacteria, and plants. Laccase can catalyze one-electron oxidation of a variety of phenolic compounds using molecular oxygen as the electron acceptor. In this study, transformation of halophenols (XPs) in laccase-catalyzed oxidation processes was explored. We first examined the intrinsic reaction kinetics and found that the transformation of XPs appeared first order to the concentrations of both XPs and laccase. A numerical model was developed to describe the role of humic acid (HA) in this process. It was demonstrated that HA could reverse the oxidation of XPs by acting as the inner filtrator of XP radical intermediates formed upon reactions between the substrates and laccase. The extent of such reversion was proportional to HA concentration. MS analysis in combination with quantum chemistry computation suggested that coupling products were generated. XPs coupled to each via C-C or C-O-C pathways, generating hydroxyl polyhalogenated biphenyl ethers (OH-PCDEs) and hydroxyl polyhalogenated biphenyls, respectively. Many of these polyhalogenated products are known to be hazardous to the ecosystem and human health, but they are not synthetic chemicals. This study shed light on their genesis in the environmental media.


Assuntos
Biocatálise , Halogenação , Hidrocarbonetos Aromáticos/metabolismo , Hidrocarbonetos Halogenados/metabolismo , Lacase/metabolismo , Fenóis/metabolismo , Cromatografia Líquida de Alta Pressão , Substâncias Húmicas/análise , Cinética , Espectrometria de Massas , Oxirredução , Trametes/enzimologia
18.
Environ Sci Technol ; 49(17): 10562-9, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26244813

RESUMO

Removal of environmentally persistent perfluoroalkyl acids (PFAAs), that is, perfluorooctanesulfonate (PFOS) and perfluorocarboxylic acids (PFCAs, C4 ∼ C10) were investigated through sorption on four metal hydroxide flocs generated in situ by electrocoagulation in deionized water with 10 mM NaCl as supporting electrolyte. The results indicated that the zinc hydroxide flocs yielded the highest removal efficiency with a wide range concentration of PFOA/PFOS (1.5 µM ∼ 0.5 mM) at the zinc dosage <150 mg L(-1) with the energy consumption <0.18 Wh L(-1). The sorption kinetics indicated that the zinc hydroxide flocs had an equilibrium adsorbed amount (qe) up to 5.74/7.69 mmol g(-1) (Zn) for PFOA/PFOS at the initial concentration of 0.5 mM with an initial sorption rate (v0) of 1.01 × 10(3)/1.81 × 10(3) mmol g(-1) h(-1). The sorption of PFOA/PFOS reached equilibrium within <10 min. The sorption mechanisms of PFAAs on the zinc hydroxide flocs were proposed based on the investigation of various driving forces. The results indicated that the hydrophobic interaction was primarily responsible for the PFAAs sorption. The electrocoagulation process with zinc anode may have a great potential for removing PFAAs from industrial wastewater as well as contaminated environmental waterbody.


Assuntos
Ácidos Alcanossulfônicos/isolamento & purificação , Eletrocoagulação/métodos , Fluorocarbonos/isolamento & purificação , Hidróxidos/química , Metais/química , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Difusão , Eletrodos , Floculação , Cinética , Modelos Teóricos , Soluções , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Água/química , Zinco/química
19.
Environ Sci Technol ; 49(14): 8558-65, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26086574

RESUMO

The environmental implications of graphene have received much attention, however, little is known about how graphene affects or may be affected by the enzymatic reactions that are critically involved in natural organic matter transformation processes. We conducted experiments to examine the role of few-layer graphene (FLG) in the reaction system of tetrabromobisphenol A (TBBPA) mediated by horseradish peroxidase (HRP). We found that TBBPA was transformed by HRP into two products that were likely formed from coupling of two TBBPA radicals via interaction of an oxygen atom on one radical and a propyl-substituted aromatic carbon atom on the other. Presence of FLG greatly increased the reaction rate by protecting HRP from inactivation. Direct reactions between TBBPA radicals and FLG were unequivocally evidenced using (14)C labeling and the characteristic photoelectron response of bromine contained in TBBPA. The thickness, size, and aggregation profile of FLG was modified by the reaction as shown by multiple characterization tools. Assessment using Daphnia magna revealed a substantial decrease in the bioaccumulation and toxicity of the FLG after being modified. The data provides the first evidence that FLG can be modified in HRP-mediated reactions and indicates that such modifications may have strong implications in its ecological effects.


Assuntos
Biocatálise , Fenômenos Ecológicos e Ambientais , Grafite/química , Peroxidase do Rábano Silvestre/metabolismo , Animais , Radioisótopos de Carbono , Daphnia/metabolismo , Concentração de Íons de Hidrogênio , Microscopia de Força Atômica , Oxirredução , Espectroscopia Fotoeletrônica , Bifenil Polibromatos/isolamento & purificação , Espectroscopia de Infravermelho com Transformada de Fourier
20.
Bull Environ Contam Toxicol ; 95(2): 265-71, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25952700

RESUMO

The removal of 17ß-estradiol (E2) by white-rot fungus Phanerochaete chrysosporium cultured in classic Kirk or potato medium was systematically investigated. Results demonstrated that E2 can be efficiently removed regardless of culture media type. However, the reaction intermediates and transformation pathways varied in different media. Estrone (E1) and estriol (E3) were sequentially generated as intermediates in the potato medium, but these intermediates were absent in Kirk medium. Such results were found to correlate to the peroxidases produced in Kirk medium. These enzymes catalyzed one-electron oxidation of E2 to form radicals that can undergo oxidative coupling. Similar enzymes were not detected in the potato medium, thus E2 underwent in vitro oxidation to form E1 and E3 sequentially. Adding glucose to the potato medium further accelerated such processes. The findings in this study provide insights into estrogen reactions mediated by P. chrysosporium and for potential development of biodegradation methods to reduce estrogen contamination levels.


Assuntos
Estradiol/metabolismo , Estrogênios/metabolismo , Phanerochaete/metabolismo , Biotransformação , Meios de Cultura , Estriol/metabolismo , Estrona/metabolismo , Oxirredução , Peroxidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA