Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 556: 39-44, 2021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-33836346

RESUMO

OBJECTIVE: To investigate the effect and significance of mammalian target of rapamycin (mTOR) inhibitors on the expression of α-SMA in lung injury induced by high volume fraction of inspired oxygen (hyperoxygen) in SD rat pups. METHODS: Seventy-two Sprague-Dawley rat pups (age: 3 weeks) were randomly divided into air + saline, hyperoxia + saline, hyperoxia + OSI-027, and hyperoxia + rapamycin groups. Animal models were constructed (n = 18). Hyperoxia was induced by continuous administration of 90% oxygen. Normal saline, OSI-027, and rapamycin are administered by intraperitoneal injection on 1d, 3d, 6d, 8d, 10d, 13d of the observation period, respectively. Following assessments were made on the 3rd, 7th, and 14th day of modeling: pathological changes in lung tissues, lung injury score, Western Blot to assess the distribution and expressions of mTOR, pS6K1, and α-SMA protein in lung tissues. RESULTS: In terms of time factors, the protein expressions of mTOR, pS6K1, and α-SMA increased with time. Except for the air group, the lung injury scores of the other groups increased with time, In terms of grouping factors, lung injury score in the air group was significantly lower than that in the other groups. In the hyperoxia group, the protein expressions of mTOR, PS6K1, and α-SMA were significantly higher than those in the other groups. The lung injury score in the hyperoxia group was significantly higher than that in the other groups. The lung injury score in the hyperoxia OSI group was significantly lower than that in the hyperoxia rapamycin group. CONCLUSION: In hyperoxia lung injury, inhibiting the activation of mTOR signaling pathway can effectively reduce the expression of α-SMA; however, only mTORC1/2 dual inhibitor OSI-027 exhibited an anti-proliferative effect, and alleviated hyperoxia-induced lung injury and fibrosis in SD rat pups.


Assuntos
Actinas/metabolismo , Hiperóxia/metabolismo , Imidazóis/farmacologia , Lesão Pulmonar/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Sirolimo/farmacologia , Triazinas/farmacologia , Animais , Feminino , Fibrose/tratamento farmacológico , Fibrose/metabolismo , Fibrose/patologia , Hiperóxia/patologia , Imidazóis/uso terapêutico , Pulmão/patologia , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/patologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Ratos , Ratos Sprague-Dawley , Proteínas Quinases S6 Ribossômicas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo , Triazinas/uso terapêutico
2.
3.
Front Pediatr ; 10: 972032, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36052359

RESUMO

Objective: Hydrocephalus in bacterial meningitis (BM) is a devastating infectious neurological disease and the proteins and pathways involved in its pathophysiology are not fully understood. Materials and methods: Label-free quantitative (LFQ) proteomics analyses was used to identify differentially expressed proteins (DEPs) in cerebrospinal fluid (CSF) samples from infants with hydrocephalus and bacterial meningitis (HBM group, N = 8), infants with bacterial meningitis (BM group, N = 9); and healthy infants (N group, N = 11). Bioinformatics analysis was subsequently performed to investigate Gene Ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) enriched signaling pathways of these DEPs. Six proteins (AZU1, COX4I1, EDF1, KRT31, MMP12, and PRG2) were selected for further validation via enzyme-linked immunosorbent assay (ELISA). Results: Compared with BM group and N group, HBM group had a higher whole CSF protein level (5.6 ± 2.7 vs. 1.7 ± 1.0 vs. 1.2 ± 0.5 g/l) and lower whole CSF glucose level (0.8 ± 0.6 vs. 1.8 ± 0.7 vs. 3.3 ± 0.8 mmol/l) (both P < 0.05). Over 300 DEPs were differentially expressed in HBM group compared with BM group and BM compared with N group, of which 78% were common to both. Cluster analysis indicated that the levels of 226 proteins were increased in BM group compared with N group and were decreased in HBM group compared with BM group. Bioinformatics analysis indicated the involvement of the cell adhesion, immune response and extracellular exosome signaling were significantly enriched in HBM compared with BM group and BM compared with N group. 267 DEPs were identified between HBM group with N group, KEGG analysis indicated that DEPs mainly involved in filament cytoskeleton and immune response. The ELISA results further verified that the expression levels of AZU1 were significantly different from among three groups (both P < 0.05). Conclusion: This is the first reported characterization of quantitative proteomics from the CSF of infants with HBM. Our study also demonstrated that AZU1 could be a potential biomarker for the diagnosis of hydrocephalus in bacterial meningitis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA