RESUMO
BACKGROUND: Anshen Buxin Liuwei pill (ABLP) is a Mongolian medicinal formula that is composed of six medicinal materials: the Mongolian medicine Bos taurus domesticus Gmelin, Choerospondias axillaris (Roxb.) Burtt et Hill, Myristica fragrans Houtt., Eugenia caryophµllata Thunb., Aucklandia lappa Decne., and Liqui dambar formosana Hance. ABLP is considered to have a therapeutic effect on symptoms such as coronary heart disease, angina pectoris, arrhythmia, depression and irritability, palpitation, and shortness of breath. METHODS: H9c2 cardiomyocytes were used to construct a hypoxia/reoxygenation (HR) injury model. CCK-8 assay and Annexin V-FITC cell apoptosis assays were used for cell viability and cell apoptosis determination. The LDH, SOD, MDA, CAT, CK, GSH-Px, Na+-K+-ATPase, and Ca2+-ATPase activities in cells were determined to assess the protective effects of ABLP. The mRNA levels of Sirtuin3 (Sirt3) and Cytochrome C (Cytc) in H9c2 cells were determined by quantitative real-time PCR. RESULTS: The results indicate that HR-treated cells began to shrink from the spindle in an irregular shape with some floated in the medium. By increasing the therapeutic dose of ABLP (5, 25, and 50 µg/mL), the cells gradually reconverted in a concentration-dependent manner. The release of CK in HR-treated cells was significantly increased, indicating that ABLP exerts a protective effect in H9c2 cells against HR injury and can improve mitochondrial energy metabolism and mitochondrial function integrity. The present study scrutinized the cardioprotective effects of ABLP against HR-induced H9c2 cell injury through antioxidant and mitochondrial pathways. CONCLUSIONS: ABLP could be a promising therapeutic drug for the treatment of myocardial ischemic cardiovascular disease. The results will provide reasonable information for the clinical use of ABLP.
Assuntos
Medicina Tradicional do Leste Asiático/métodos , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/metabolismo , Animais , Apoptose/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citocromos c/metabolismo , Hipóxia/metabolismo , Mitocôndrias/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Ratos , Sirtuína 3/metabolismoRESUMO
Tibetan medicine processing ensures the safety of clinical application of Tibetan medicine. It is of great significance to analyze the principles of Tibetan medicine processing in the development, inheritance, and innovation of Tibetan medicine. However, due to the late start of modern Tibetan medicine research and the disciplinary division, the current research on Tibetan medicine processing focuses on the exploration and collation of traditional techniques and the analysis of the processing mechanism of Tibetan medicine through chemical and pharmacological research, but its principles and traditional theories have been rarely reported. In view of this, after analyzing the concept, essence, theories, purposes, and functions of Tibetan medicine processing through the integration of Tibetan medicine, Tibetan pharmacology, and clinical research of Tibetan medicine, this study proposed that the essence of Tibetan medicine processing was to change the "five sources" composition of medicinal materials through physical, chemical, and biological means, or the comprehensive means, and the theoretical principle of Tibetan medicine processing was to change or transform the positive and adverse effects or the obvious and recessive effects by altering the "five sources" composition of the drug to maximize the positive effect and minimize the adverse effect and the damage to the body, thereby achieving the purposes of toxicity reduction, efficacy enhancement, and drug property harmonization represented by sharpening, softening, nourishing, and reasonable compatibility. This study is expected to provide references for the construction of the theoretical system of Tibetan medicine processing, the inheritance of processing techniques, and innovative research.
Assuntos
Medicamentos de Ervas Chinesas , Plantas Medicinais , Medicamentos de Ervas Chinesas/farmacologia , Medicina Tradicional Chinesa , Medicina Tradicional Tibetana , Plantas Medicinais/químicaRESUMO
The purpose of this study was to predict the active components, targets and signaling pathways of Veratrilla baillonii for the prevention and treatment of non-alcoholic liver diseases, preliminarily verify the active components and related targets through cell experiments, and elucidate the mechanism of V. baillonii on liver protection. The candidate active components of V. baillonii were screened by searching Chinese medicine ingredients and Chinese medicine pharmacology database and analysis platform, combined with the pharmacokinetic parameters(oral availability and drug-like principle); the target of candidate active ingredients were predicted by protein database, and the target of disease related to non-alcoholic liver disease was predicted. Cytoscape software was used to construct the network of "active component-target-disease", and the protein interaction network was constructed through the STRING database to infer the core target. GO annotation analysis, KEGG pathway analysis and enrichment analysis were conducted through DAVID bioinformatics annotation database. Finally, the core target and pathway of V. baillonii were preliminarily verified by the experimental model of H_2O_2-induced liver cell damage intervened by V. baillonii water extract(WVBF). The cell viability was detected by MTT assay and real-time unlabeled assay, and the expression of related genes was analyzed by Real-time quantitative polymerase chain reaction(PCR). Firstly, 14 active components were obtained from V. baillonii through network pharmacology. There were 287 potential targets corresponding to the components, 587 targets related to non-alcoholic liver disease, and 13 core targets after the interaction between active ingredient targets and disease targets. Secondly, GO enrichment analysis showed that these genes mainly affected 26 biological processes such as nuclear receptor activity, transcription factor activity, steroid hormone receptor activity, ubi-quitin-like protein ligase binding, protein heterodimerization activity, and transcription cofactor binding. KEGG enrichment analysis showed that PI3 K-AKT signaling pathway, HIF-1 signaling pathway, MAPK signaling pathway, insulin signaling pathway, TNF signaling pathway and some cancer-related pathways were more enriched. Finally, TNF-α and MAPK8 were successfully verified as important targets by hepatocytes in vitro, which suggested that V. baillonii could significantly improve liver damage. TNF-α and MAPK8 were one of the targets. Based on the above results, we systematically predicted the material basis and biological mechanism of V. baillonii through multi-component, multi-target and multi-pathway regulation of nonalcoholic liver disease, and the core targets were successfully verified by cells, providing data basis and scientific basis for the in-depth development of V. baillonii.
Assuntos
Medicamentos de Ervas Chinesas , Gentianaceae , Medicina Tradicional Chinesa , Mapas de Interação de Proteínas , Transdução de SinaisRESUMO
The use of phytochemicals and herbal medicines has accompanied human history. Advances in modern biomedical sciences have allowed us to investigate the functional mechanisms of herbal medicines and phytochemicals. Veratrilla baillonii Franch. has long been used as a medicinal herb in southwestern China. Here, we analyzed the effects of an ethanol extract from V. baillonii (VBFE) on the expression levels of the cytosolic form of the phosphoenolpyruvate carboxykinase gene (Pck1) mRNA and components of the insulin signalling cascade in HL1C hepatoma cells. Compared with the insulin control, VBFE treatment inhibited the expression of Pck1 mRNA in a dose-dependent manner. This was associated with the phosphorylation of Akt and Erk1/2 in a time-dependent manner. Further analysis of the purified components of VBFE indicated that gentiopicroside and sweroside from VBFE, alone and in combination, suppressed Pck1 expression and induced Akt and Erk1/2 phosphorylation. In conclusion, gentiopicroside and sweroside suppress Pck1 expression and induce phosphorylation of components in the insulin signalling cascade. This is the first study to demonstrate that gentiopicroside and sweroside show insulin-mimicking effects on the regulation of Pck1 expression. Further studies are warranted to explore the potential of gentiopicroside and sweroside in the control of blood glucose in animals.
Assuntos
Gentianales/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Glucosídeos Iridoides/farmacologia , Fosfoenolpiruvato Carboxiquinase (GTP)/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Insulina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Hepáticas/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Fosforilação/efeitos dos fármacos , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Plantas Medicinais/química , RNA Mensageiro , RatosRESUMO
G9A-like protein (GLP) plays an important role in mouse early embryonic development. Glp-deficient embryos exhibit severe growth retardation and defects that lead to lethality at approximately Embryonic Day 9.5. In the present study we investigated the effect of microinjection of Glp-specific short interference (si) RNA into mouse zygotes on in vitro embryonic development. Knockdown of Glp induced abnormal embryonic development and reduced blastocyst formation. Expression of the pluripotency markers octamer-binding transcription factor 4 (Oct4), SRY (sex determining region Y)-box 2 (Sox2) and Nanog was also significantly decreased in Glp-deficient embryos. The apoptotic index and expression of two pro-apoptotic genes, namely Caspase 3 and Caspase 9, were increased in Glp-deficient embryos. Moreover, methylation levels of dimethylated H3K9 (H3K9me2) were decreased in Glp-knockdown embryos. In conclusion, the results of the present study suggest that Glp deficiency suppresses H3K9me2 modification and hinders mouse embryo development in vitro.
RESUMO
Tributyltin, an organotin, is ubiquitous in estuaries and freshwater systems. Previous reports suggest that tributyltin is an endocrine disruptor in many wildlife species and it inhibits aromatase in mammalian placental and granulosa-like tumor cell lines. However, no evidence showing the effects of tributyltin on oocytes or preimplantation embryonic developmental competence exists. Therefore, we investigated the role of tributyltin chloride (TBTCl) in the development of female oocytes and preimplantation embryos. Briefly, female ICR mice were gavaged with 0 (vehicle), 4, and 8 mg/kg of TBTCl each day for 18 days. The fluorescence intensity analysis showed that the 5-methylcytosine level decreased after TBTCl treatment, indicating that the general DNA methylation level decreased in the treated oocytes. Our results demonstrate that TBTCl treatment results in decreased mRNA levels of imprinted genes H19, Igf2r, and Peg3 during oocyte growth. The TBTCl-treated oocytes showed a significant increase in reactive oxygen species levels in germinal vesicle oocytes. In TBTCl-treated oocytes, there was no difference in GPx and Sod1 expression, but a decreased mRNA level of Cat occurred when compared with control. Moreover, the blastocysts with TBTCl exposure displayed higher apoptotic signals. These results suggest that TBTCl induces developmental defects in oocytes and preimplantation embryos.
Assuntos
Blastocisto/efeitos dos fármacos , Disruptores Endócrinos/metabolismo , Oócitos/efeitos dos fármacos , Compostos Orgânicos de Estanho/metabolismo , Compostos de Trialquitina/metabolismo , Animais , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Camundongos Endogâmicos ICR , RNA Mensageiro/análise , Espécies Reativas de Oxigênio/análiseRESUMO
To study the effect of Siwu decoction on the function and expression of P-glycoprotein (P-gp) in Caco-2 cells. The Real-time quantitative poly-merase chain reaction (Q-PCR) was used to analyze the mRNA expression of MDR1 gene in Caco-2 cells. Flow cytometer was used to study the effect of Siwu decoction on the uptake of Rhodamine 123 in Caco-2 cells, in order to evaluate the efflux function of P-gp. Western blotting method was used to detect the effect of Siwu decoction on the P-gp protein expression of Caco-2 cells. Compared with the blank control group, after Caco-2 incubation with Siwu decoction at concentrations of 3.3, 5.0, 10.0 g x L(-1) for 24, 48, 72 h, the mRNA expression of MDR1 was up-regulated, suggesting the effect of Siwu decoction in inducing the expression of MDR1. After the administration with Siwu decoction in Caco-2 cells for 48 h, the uptake of Rhodamine 123 in Caco-2 cells decreased by respectively 16.6%, 22.1% (P < 0.05) and 45.4% (P < 0.01), indicating that the long-term administration of Siwu decoction can enhance the P-gp efflux function of Caco-2 cells. After the incubation of Caco-2 cells with Siwu decoction for 48 h, the P-gp protein expression on Caco-2 cell emebranes, demonstrating the effect of Siwu decoction in inducing the protein expression of P-gp.
Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Medicamentos de Ervas Chinesas/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Células CACO-2 , Humanos , Regulação para Cima/efeitos dos fármacosRESUMO
Enhancer of zeste homologue 2 (Ezh2) is essential for the development of the early mouse preimplantation embryo. Loss of Ezh2 results in embryonic lethality in mice. Ezh2-deficient embryos display impaired outgrowth potential, defective establishment of Ezh2-null embryonic stem (ES) cells and adherence and differentiation of the trophoblast layer into giant cells. We investigated if Ezh2 controls the fate of embryos at an earlier stage by treating with cycloheximide (CHX) or microinjecting short interfering RNA (siRNA) to restrict embryonic Ezh2 expression during preimplantation. CHX inhibited de novo EZH2 protein synthesis in zygotes, suggesting that EZH2 requires de novo synthesis during post-fertilisation stages. We found that loss of Ezh2 at the pronuclear stage caused severe growth retardation and reduced blastocyst formation. Expression of the pluripotency-associated markers Oct4, Sox2 and Nanog were significantly decreased in embryos that had been injected with Ezh2 siRNA. In addition, Ezh2 loss induced upregulated expression of genes related to the differentiation of germ layers, including Gata6, Hoxb1 and Hand1. Finally, apoptosis was increased in the blastocyst embryos with Ezh2 knockdown. Modification of histone H3-Lysine 27 de-methylation and tri-methylation (H3K27me2/3) was strongly reduced in Ezh2 siRNA embryos. We conclude that Ezh2 is essential for early preimplantation embryo development through the regulation of epigenetic modification and apoptosis.
Assuntos
Blastocisto/metabolismo , Complexo Repressor Polycomb 2/metabolismo , Animais , Apoptose , Diferenciação Celular , Técnicas de Cultura Embrionária , Desenvolvimento Embrionário , Proteína Potenciadora do Homólogo 2 de Zeste , Epigênese Genética , Fertilização in vitro , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Histonas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Metilação , Camundongos Endogâmicos ICR , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Oócitos/metabolismo , Complexo Repressor Polycomb 2/deficiência , Complexo Repressor Polycomb 2/genética , Interferência de RNA , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Transdução de SinaisRESUMO
RESEARCH QUESTION: Granulosa cells (GCs) dysfunction plays a crucial role in the pathogenesis of polycystic ovary syndrome (PCOS). It is reported that YTH domain-containing family protein 2 (YTHDF2) is upregulated in mural GCs of PCOS patients. What effect does the differential expression of YTHDF2 have in PCOS patients? DESIGN: Mural GCs and cumulus GCs from 15 patients with PCOS and 15 ovulatory controls and 4 cases of pathological sections in each group were collected. Real-time PCR, Western Blot, immunohistochemistry, and immunofluorescence experiments were conducted to detect gene and protein expression. RNA immunoprecipitation assay was performed to evaluate the binding relationship between YTHDF2 and MSS51. Mitochondrial morphology, cellular ATP and ROS levels and glycolysis-related gene expression were detected after YTHDF2 overexpression or MSS51 inhibition. RESULTS: In the present study, we found that YTHDF2 was upregulated in GCs of PCOS patients while MSS51 was downregulated. YTHDF2 protein can bind to MSS51 mRNA and affect MSS51 expression. The reduction of MSS51 expression or the increase in YTHDF2 expression can lead to mitochondrial damage, reduced ATP levels, increased ROS levels and reduced expression of LDHA, PFKP and PKM. CONCLUSIONS: YTHDF2 may regulate the expression of MSS51, affecting the structure and function of mitochondria in GCs and interfering with cellular glycolysis, which may disturb the normal biological processes of GCs and follicle development in PCOS patients.
Assuntos
Células da Granulosa , Mitocôndrias , Síndrome do Ovário Policístico , Proteínas de Ligação a RNA , Adulto , Feminino , Humanos , Trifosfato de Adenosina/metabolismo , Regulação da Expressão Gênica , Glicólise/genética , Células da Granulosa/metabolismo , Células da Granulosa/patologia , Mitocôndrias/metabolismo , Mitocôndrias/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/patologia , Espécies Reativas de Oxigênio/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genéticaRESUMO
DNA demethylation is associated with gene activation and is mediated by a family of ten-eleven translocation (TET) dioxygenase. The TET3 protein is a 1668-amino-acid DNA demethylase that is predicted to possess five nuclear localization signals (NLSs). In this paper, we used a series of green fluorescent protein-tagged and mutation constructs to identify a conserved NLS (KKRK) embedded between amino acid 1615 and 1618 of mouse TET3. The KKRK sequence facilitates the cytoplasmic protein's translocation into the nucleus. Additionally TET3 may be imported into the nucleus by importin-α and importin-ß.
Assuntos
Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/metabolismo , Sinais de Localização Nuclear , Proteínas Proto-Oncogênicas/análise , Proteínas Proto-Oncogênicas/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Animais , Proteínas de Ligação a DNA/genética , Dioxigenases , Camundongos , Dados de Sequência Molecular , Mutação , Células NIH 3T3 , Proteínas Proto-Oncogênicas/genética , Alinhamento de SequênciaRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Ruyi Zhenbao Pill (RZP) is a prescribed Tibetan formulation for the treatment of white-pulse-disease, yellow-water-disease as well as pain-related disease. RZP is composed of 30 medicinal materials including herbal medicine, animal medicine and mineral medicine. They are widely used in the Tibetan area to treat cerebrovascular disease, hemiplegia, rheumatism, and pain diseases for centuries. AIM OF THE STUDY: The aim of the present study was to evaluate the anti-osteoarthritis function of RZP and to clarify the underlying mechanisms. MATERIALS AND METHODS: The active components in RZP were identified using HPLC methods. Osteoarthritis (OA) animal model was established via intra-articular injection of papain in rat knees. After the administration of RZP (0.45, 0.9 g/kg) for 28 days, the clinical observation was conducted, and pathological changes as well as serum biochemical indexes were detected. Moreover, therapeutic targets and pathways of RZP were discussed. RESULTS: The results showed that RZP could suppress knee joint swelling and arthralgia, thus relieving joint pain and inflammation in OA rats. Microcomputed tomography (µCT)-based physiological imaging and staining pictures confirmed the therapeutic effects of RZP on OA symptoms including knee joint swelling and structural changes with progressive inflammation in OA rats. RZP could promote the synthesis or inhibit the degradation of COLâ ¡, attenuate OA-induced OPN up-regulation and thus relieve the OA symptom. Furthermore, RZP (0.45-0.9 g/kg) could all ameliorate the imbalance of biomarkers related to OA such as MMP1, TNF-α, COX2, IL-1ß and iNOS in knee joints or serum. CONCLUSION: In conclusion, RZP could effectively relieve inflammatory reaction induced by OA injury and the formulation could be applied to the treatment of OA therapy.
Assuntos
Cartilagem Articular , Osteoartrite , Ratos , Animais , Tibet , Microtomografia por Raio-X , Osteoartrite/tratamento farmacológico , Inflamação/patologia , Artralgia/patologia , Modelos Animais de DoençasRESUMO
BACKGROUND: Anshen Buxin Liuwei pill (ABLP) is a Mongolian medicinal formula which has a therapeutic effect on the symptoms such as coronary heart disease, angina pectoris, arrhythmia, depression and irritability, palpitation, and short breath. However, its bioactivity against cardiac injury remains unclear. METHODS: The protective effect of ABLP was evaluated using H9c2 cells. Cell viability, intracellular Ca2+, reactive oxidative indices, and mitochondrial membrane potential (∆ψ) were assessed, respectively. The mRNA levels of Ca2+ channel-related genes (DHPR, RyR2, and SCN5A) and oxidative stress-related genes (Keap1, Nrf2, and HO-1) were measured by RT-PCR. RESULTS: 0.5-50 µg/mL ABLP could significantly decrease H2O2-induced cell injury by suppressing cell necrosis/apoptosis and excess oxidative stress, ameliorating the collapse of ∆ψ, and reducing intracellular Ca2+ concentration. Furthermore, 0.5-50 µg/mL ABLP reversed H2O2-induced imbalance in the mRNA levels of DHPR, RyR2, SCN5A, Keap1, Nrf2, and HO-1 gene in H9c2 cells, which further illustrate the mechanism. CONCLUSION: ABLP provided protective and therapeutic benefits against H2O2-induced H9c2 cell injury, indicating that this formula can effectively treat coronary disease. In addition, the present study also provides an in-depth understanding of the pharmacological functions of ABLP, which may lead to further successful applications of Mongolian medicine.
RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Areca Thirteen Pill, also called Gao You-13 (GY-13), is a traditional Mongolian herbal formula and has been extensively used to treat depression in Mongolian areas, which belongs to Heyi disease in Mongolian medicine. Major depressive disorder is a serious psychiatric disease, only one-third of individuals with depression are responsive to current antidepressants in clinic. Growing attention has been attracted by traditional herbal medicines in fighting depression because they are considered safer alternatives to pharmacotherapy. AIM OF THE STUDY: To reveal the mechanism of GY-13 in the treatment of depression. MATERIALS AND METHODS: The rat depression model was established by chronic unpredictable mild stress (CUMS), and primary hippocampal neurons were used to construct a glutamate-induced excitotoxicity model. The antidepressant effect of GY-13 was then assessed by performing sucrose preference tests, open field tests, and body weight measurements on rats. The expression of cAMP and PKA, mRNA levels of brain-derived neurotrophic factor (BDNF) and cAMP response element binding protein (CREB), and hippocampal neuronal apoptosis were measured. RESULTS: The results indicate that GY-13 significantly improves depression-like behavior, rescues decreased cAMPï¼ PKA, recovers the mRNA levels of CREB and BDNF, and increases the proliferative activity of hippocampus. In addition, blockade of PKA reverses the effects of GY-13 treatment on CREB mRNA, BDNF mRNA levels. In vitro, GY-13 treatment increased hippocampal proliferative activity and attenuated Glu-induced apoptosis of hippocampal neurons as well as reduced CREB mRNA and BDNF mRNA expression levels. CONCLUSIONS: Our research demonstrated that GY-13 treatment exerted a potent antidepressant action via activation of cAMP/CREB/BDNF signaling pathway, promoting proliferation, and suppressing apoptosis. This research provides molecular biological ground for developing GY-13 into a potent alternative for the intervention of depression.
Assuntos
Fator Neurotrófico Derivado do Encéfalo , Transtorno Depressivo Maior , Animais , Antidepressivos/metabolismo , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Areca , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Depressão/metabolismo , Transtorno Depressivo Maior/tratamento farmacológico , Hipocampo , Medicina Tradicional da Mongólia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Estresse Psicológico/tratamento farmacológicoRESUMO
Type 2 diabetes mellitus (T2DM) is a complex and polygenic disorder with diverse complications. Veratrilla baillonii Franch (V. baillonii) has been applied in the intervention and treatment a diverse range of diseases, including diabetes. In this study, we revealed that water extracts of V. baillonii (WVBF) can ameliorate liver injury and insulin resistance in T2DM rat model. To elucidate the anti-diabetic mechanisms of WVBF, we performed liver transcriptome analysis that displayed WVBF treatment significantly suppressed many gene expressions involved in insulin resistance. Furthermore, functional experiments showed that WVBF treatment reduced the pathological damages of liver and pancreas, which may be regulated by Foxo1, Sirt1, G6pc, c-Met, Irs1, Akt1, Pik3r1. These results indicated that WVBF improves diabetic liver injury and insulin resistance in diabetic rats. Therefore, this study demonstrated WVBF could be used as a promising therapeutic agent for intervention and treatment of diabetes.
RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Compound Ruteng (CRT) is a prescribed formulation based on the theory of Tibetan medicine for the treatment of yellow-water-disease. It is consisted with 7 medicinal material include Boswellia carterii Birdw (named "Ruxiang" in Chinese); Tinospora sinensis (Lour.) Merr. (named "Kuan-Jin-Teng" in Chinese), Cassia obtusifolia L (named "Jue-Ming-Zi" in Chinese); Abelmoschus manihot (L.) Medic (named "Huang-Kui-Zi" in Chinese); Terminalia chebula Retz. (named "He-Zi" in Chinese); Lamiophlomis rotata (Benth.) Kudo (named "Du-Yi-Wei" in Chinese) and Pyrethrum tatsienense (Bur. et Franch.) Ling (named "Da-Jian-Ju" in Chinese). They are widely distributed in Tibet area of China and have been used to treat rheumatism, jaundice, and skin diseases for centuries. AIM OF THE STUDY: The present study was conducted to investigate the anti-arthritis effect of CRT and to disclose the systems pharmacology-based dissection of mechanisms. MATERIALS AND METHODS: The chemical constituents in CRT were identified using HPLC method, and CRT candidate targets against RA were screened by network pharmacology-based analysis and further experimentally validated based on collagen-induced arthritis (CIA) rat model. Furthermore, therapeutic mechanisms and pathways of CRT were investigated. RESULTS: 391 potential targets (protein) were predicted against 92 active ingredients of 7 medicinal materials in CRT. Enrichment analysis and molecular docking studies also enforced the practiced results. X-ray based physiological imaging showed the attenuated effect of CRT on paw swelling, synovial joints and cartilage with improved inflammation in CIA rats. Moreover, the expression of biomarkers associated with RA such as MMP1, MMP3 and MMP13 and TNF-a, COX2 and iNOS are down-regulated in ankle joints, serum, or liver. CONCLUSION: In conclusion, CRT compound could attenuate RA symptoms and active ingredients of this compound could be considered for drug designing to treat RA.
Assuntos
Antirreumáticos/farmacologia , Antirreumáticos/uso terapêutico , Artrite Experimental/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Animais , Antirreumáticos/química , Artrite Experimental/sangue , Artrite Experimental/diagnóstico por imagem , Artrite Experimental/patologia , Colágeno/toxicidade , Ciclo-Oxigenase 2/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Medicamentos de Ervas Chinesas/química , Articulações/diagnóstico por imagem , Articulações/efeitos dos fármacos , Articulações/patologia , Masculino , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Medicina Tradicional Tibetana , Simulação de Acoplamento Molecular , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Mapas de Interação de Proteínas , Ratos Wistar , Triterpenos/químicaRESUMO
We studied an acute and subchronic oral toxicity of Mequindox (MEQ), a quinoxaline 1,4-dioxide antimicrobial promoter, in Wistar rats according to OECD guidelines. For acute toxicity study, single doses of MEQ at 175, 550 and 2000 mg/kg b.w. were administered to rats by oral gavage. The calculated LD(50) was 550 mg/kg b.w. In subchronic study, rats were fed diets containing 0, 55, 110 or 275 mg MEQ/kg. There was a reduction in body weight of rats fed 275 mg MEQ/kg diet. At 90 days autopsy, a significant decrease in the kidney weight was observed in males while an increase in relative liver and adrenal weights were observed in females fed 275 mg MEQ/kg diet. There was a significant increased in alanineaminotransferase (ALT) and malondialdehyde (MDA) concentrations in males, superoxide dismutase (SOD) activities in females, and aspartateaminotransferase (AST) levels in serum of both genders fed 275 mg MEQ/kg diet. Other toxic effects of 275 mg MEQ/kg diet included significant decrease in sodium and significant increase in potassium concentrations in serum in both genders. We may conclude that MEQ can induce hepatic and adrenal histological changes as well as leaking of different serum constituents in Wistar rats.
Assuntos
Anti-Infecciosos/toxicidade , Quinoxalinas/toxicidade , Administração Oral , Glândulas Suprarrenais/efeitos dos fármacos , Glândulas Suprarrenais/patologia , Animais , Anti-Infecciosos/química , Peso Corporal/efeitos dos fármacos , Relação Dose-Resposta a Droga , Feminino , Rim/efeitos dos fármacos , Rim/patologia , Dose Letal Mediana , Fígado/efeitos dos fármacos , Fígado/patologia , Testes de Função Hepática , Masculino , Estrutura Molecular , Tamanho do Órgão/efeitos dos fármacos , Quinoxalinas/química , Ratos , Ratos Wistar , Fatores Sexuais , Testes de Toxicidade Aguda , Testes de Toxicidade CrônicaRESUMO
Glucose is used aerobically and anaerobically to generate energy for cells. Glucose transporters (GLUTs) are transmembrane proteins that transport glucose across the cell membrane. Insulin promotes glucose utilization in part through promoting glucose entry into the skeletal and adipose tissues. This has been thought to be achieved through insulin-induced GLUT4 translocation from intracellular compartments to the cell membrane, which increases the overall rate of glucose flux into a cell. The insulin-induced GLUT4 translocation has been investigated extensively. Recently, significant progress has been made in our understanding of GLUT4 expression and translocation. Here, we summarized the methods and reagents used to determine the expression levels of Slc2a4 mRNA and GLUT4 protein, and GLUT4 translocation in the skeletal muscle, adipose tissues, heart and brain. Overall, a variety of methods such real-time polymerase chain reaction, immunohistochemistry, fluorescence microscopy, fusion proteins, stable cell line and transgenic animals have been used to answer particular questions related to GLUT4 system and insulin action. It seems that insulin-induced GLUT4 translocation can be observed in the heart and brain in addition to the skeletal muscle and adipocytes. Hormones other than insulin can induce GLUT4 translocation. Clearly, more studies of GLUT4 are warranted in the future to advance of our understanding of glucose homeostasis.
RESUMO
Based on the pathological theory of lipid metabolism and using network pharmacology, this study was designed to investigate the protective effect of water extract of Veratrilla baillonii (WVBF) on non-alcoholic fatty liver disease (NAFLD) model using LO2 cells and to identify the potential mechanism underlying the effect. The components of V. baillonii were identified from the public database of traditional Chinese medicine systems pharmacology database (TCMSP). Cytoscape software was used to construct the related composite target network. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were carried out for critical nodes. The BioGPS database was used to determine the distribution of the target in tissues and organs. Moreover, the inhibitory effect of V. baillonii was further investigated using an in vitro hepatocyte NAFLD model. Fourteen active components were then selected from the 27 known compounds of V. baillonii. The targets of gene enrichment analysis were mainly distributed in the lipid catabolism-related signaling pathway. Network analysis revealed that five target genes of TNF, MAPK8, mTOR, NF-ĸB, and SREBP-1c were key nodes and played important roles in this process. Organ localization analysis indicated that one of the core target site of V. baillonii was liver tissue. The results of the in vitro study revealed that WVBF can alleviate the inflammatory response and lipid accumulation in LO2 hepatocytes by inhibiting oxidative stress and the adipocytokine signaling pathway. Genes and proteins related to the lipid synthesis, such as SREBP-1C, acetyl-CoA carboxylase (ACC), and fatty acid synthase (FASN), were significantly decreased, and PPARα expression is significantly increased with WVBF administration. In conclusion, V. baillonii may regulate local lipid metabolism and attenuate oxidative stress and inflammatory factors through the PPARα/SREBP-1c signaling pathway. The present study also indicates that multiple components of V. baillonii regulate multiple targets and pathways in NAFLD. The findings highlight the potential of V. baillonii as a promising treatment strategy for nonalcoholic fatty liver injury.
RESUMO
Sodium aescinate (SA) is a vital salt of sodium escin from Aesculus wilsonii Rehd seeds. SA injection (SAI) has received great success in treating cerebral edema, venous reflux disease and other inflammatory conditions. Recently, high incidences of immediate hypersensitivity reactions were reported after SA infusion, which raised questions on safety and risk associated with its clinical application. This study was designed to check whether SAI and its four components induce degranulation using RBL-2H3 mast cells. For this purpose, we evaluated different treatment levels of SAI (20, 40, 60, 80 and 100 µg ml-1) and its four characteristic components, SA-A, SA-B, SA-C and SA-D, at 60 µg ml-1 in different tests including cell viability test, ß-hexosaminidase and histamine assays, oxidative stress indices, apoptosis analysis and intracellular calcium ions in RBL-2H3 cells. Our results demonstrated that SAI at 80 µg ml-1 and 100 µg ml-1, and its two components (SA-B and SA-D) at 60 µg ml-1 were responsible for disturbing cell morphology and cell viability, elevated levels of ß-hexosaminidase, histamine, modulation of oxidative stress indices, induced apoptosis and increase in intracellular calcium ions in RBL-2H3 cells, when compared with the control. Our results demonstrated for the first time that SAI was more likely to induce immediate hypersensitivity reactions attributable to degranulation via oxidative stress caused by SA-B and SA-D components. These results would not only be useful for the safety of end user but also for the industry to improve the quality of SA infusion.
RESUMO
The formation of zygote is the beginning of mammalian life, and dynamic epigenetic modifications are essential for mammalian normal development. H3K27 di-methylation (H3K27me2) and H3K27 tri-methylation (H3K27me3) are marks of facultative heterochromatin which maintains transcriptional repression established during early development in many eukaryotes. However, the mechanism underlying establishment and regulation of epigenetic asymmetry in the zygote remains obscure. Here we show that maternal EZH2 is required for the establishment of H3K27me3 in mouse zygotes. However, combined immunostaining with ULI-NChIP-seq (ultra-low-input micrococcal nuclease-based native ChIP-seq) shows that EZH1 could partially safeguard the role of EZH2 in the formation of H3K27me2. Meanwhile, we identify that EHMT1 is involved in the establishment of H3K27me2, and that H3K27me2 might be an essential prerequisite for the following de novo H3K27me3 modification on the male pronucleus. In this work, we clarify the establishment and regulatory mechanisms of H3K27me2 and H3K27me3 in mouse zygotes.