Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 35(1): 13, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30603886

RESUMO

Filamentous fungi Monascus sp. has been utilized for fermentative production of food colorant (Red Yeast Rice) for more than 1000 years in China. The main colorant components of Red Yeast Rice are mixture of red Monascus pigments (RMPs) with various primary amine residues. In the present work, the non-natural primary amine p-aminobenzamide, exhibiting as non-involved in nitrogen microbial metabolism, nontoxicity to microbial cells, and chemical reactivity with orange Monascus pigments (OMPs), was screened. Based on the screened result, RMPs with the single p-aminobenzamide residue were produced by cell suspension culture in a nonionic surfactant micelle aqueous solution via in situ chemical modification of OMPs. Furthermore, in situ chemical modification of OMPs also provided a strategy for maintaining a relatively low OMP concentration and then efficient accumulation of high concentration of RMPs (3.3 g/l).


Assuntos
Aminas/química , Monascus/metabolismo , Pigmentos Biológicos/química , Pigmentos Biológicos/metabolismo , Tensoativos/química , Benzamidinas/química , Técnicas de Cultura de Células
2.
Appl Microbiol Biotechnol ; 102(2): 677-687, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29177624

RESUMO

It is generally accepted that Monascus pigments are predominantly cell-bound, including both intracellular and surface-bound pigments. This long-term misconception was corrected in the present work. Production of extracellular crystal pigments by submerged culture of Monascus sp. was confirmed by microscopic observation and collection of Monascus pigments from extracellular broth by direct membrane filtration. Following up the new fact, the bioactivity of mycelia as whole-cell biocatalyst for biosynthesis and biodegradation of Monascus pigments had been detailedly examined in both an aqueous solution and a nonionic surfactant micelle aqueous solution. Based on those experimental results, cell suspension culture in an aqueous medium was developed as a novel strategy for accumulation of high concentration of Monascus pigments. Thus, glucose feeding during submerged culture in the aqueous medium was carried out successfully and high orange Monascus pigments concentration of near 4 g/L was achieved.


Assuntos
Técnicas de Cultura de Células/métodos , Cristalização , Monascus/química , Pigmentos Biológicos/biossíntese , Biocatálise , Meios de Cultura/química , Fermentação , Glucose/química , Micelas , Tensoativos/química , Água
3.
Front Microbiol ; 9: 3143, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30622522

RESUMO

Red Yeast Rice, produced by solid state fermentation of Monascus species on rice, is a traditional food additive and traditional Chinese medicine. With the introduction of modern microbiology and biotechnology to the traditional edible filamentous fungi Monascus species, it has been revealed that the production of red colorant by fermentation of Monascus species involves the biosynthesis of orange Monascus pigments and further chemical modification of orange Monascus pigments into the corresponding derivates with various amine residues. Further study indicates that non-Monascus species also produce Monascus pigments as well as Monascus-like pigments. Based on the chemical modification of orange Monascus pigments, the diversification of native Monascus pigments, including commercial food additives of Red Monascus Pigments® and Yellow Monascus Pigments® in Chinese market, was reviewed. Furthermore, Monascus pigments as well as their derivates as enzyme inhibitors for anti-obesity, hyperlipidemia, and hyperglycemia was also summarized.

4.
AMB Express ; 7(1): 88, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28452040

RESUMO

Cell suspension culture using mycelia as whole cell biocatalyst for production of orange Monascus pigments has been carried out successfully in a nonionic surfactant micelle aqueous solution. Thus, selection of mycelia as whole cell biocatalyst and the corresponding enzymatic kinetics for production of orange Monascus pigments can be optimized independently. Mycelia selected from submerged culture in a nonionic surfactant micelle aqueous solution with low pH 2.5 exhibits robust bioactivity. At the same time, enzymatic kinetic study shows that the bioactivity of mycelia as whole cell biocatalyst is sensitive to high product concentration. Segregation of product from mycelia by cell suspension culture in a nonionic surfactant micelle aqueous solution or peanut oil-water two-phase system is not only necessary for studying the enzymatic kinetics but also beneficial to industrial application of mycelia as whole cell biocatalyst.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA