Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
J Virol ; : e0045824, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38814067

RESUMO

Tryptophan metabolism plays a crucial role in facilitating various cellular processes essential for maintaining normal cellular function. Indoleamine 2,3-dioxygenase 1 (IDO1) catalyzes the conversion of tryptophan (Trp) into kynurenine (Kyn), thereby initiating the degradation of Trp. The resulting Kyn metabolites have been implicated in the modulation of immune responses. Currently, the role of IDO1-mediated tryptophan metabolism in the process of viral infection remains relatively unknown. In this study, we discovered that classical swine fever virus (CSFV) infection of PK-15 cells can induce the expression of IDO1, thereby promoting tryptophan metabolism. IDO1 can negatively regulate the NF-κB signaling by mediating tryptophan metabolism, thereby facilitating CSFV replication. We found that silencing the IDO1 gene enhances the expression of IFN-α, IFN-ß, and IL-6 by activating the NF-κB signaling pathway. Furthermore, our observations indicate that both silencing the IDO1 gene and administering exogenous tryptophan can inhibit CSFV replication by counteracting the cellular autophagy induced by Rapamycin. This study reveals a novel mechanism of IDO1-mediated tryptophan metabolism in CSFV infection, providing new insights and a theoretical basis for the treatment and control of CSFV.IMPORTANCEIt is well known that due to the widespread use of vaccines, the prevalence of classical swine fever (CSF) is shifting towards atypical and invisible infections. CSF can disrupt host metabolism, leading to persistent immune suppression in the host and causing significant harm when co-infected with other diseases. Changes in the host's metabolic profiles, such as increased catabolic metabolism of amino acids and the production of immunoregulatory metabolites and their derivatives, can also influence virus replication. Mammals utilize various pathways to modulate immune responses through amino acid utilization, including increased catabolic metabolism of amino acids and the production of immunoregulatory metabolites and their derivatives, thereby limiting viral replication. Therefore, this study proposes that targeting the modulation of tryptophan metabolism may represent an effective approach to control the progression of CSF.

2.
Environ Res ; 258: 119416, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38885827

RESUMO

To address the urgent need for efficient removal of lead-containing wastewater and reduce the risk of toxicity associated with heavy-metal wastewater contamination, materials with high removal rates and easy separation must be developed. Herein, a novel organic-inorganic hybrid material based on phosphorylated magnetic chitosan (MSCP) was synthesized and applied for the selective removal of lead (II) from wastewater. From the characterization and the experimental results can be obtained that the magnetic saturation strength of MSCP reaches 14.65 emu/g, which can be separated quickly and regenerated readily, and maintains high adsorption performance even after 5 cycles, indicating that the adsorbent possesses good magnetic separation performance and durability. Also, MSCP showed high selective adsorption performance for lead in the multiple metal ions coexistence solutions at pH 6.0 and room temperature, with an adsorption coefficient SPb-MSCP of 78.85%, which was much higher than that of MSC (the SPb-MSC was 11.59%). Additionally, in the single lead system, the sorption characteristics of Pb(II) on MSCP and MCP had obvious pH-responsiveness, and their adsorption capacity increased with the increase of solution pH, reaching the maximal values of 80.19 and 72.68 mg/g, respectively. It is noteworthy that the acid resistance of MSCP with an inert layer coated on the core is significantly improved, with almost no iron leaching from MSCP over the entire acidity range, while MCP has 7.63 mg/g of iron leaching at pH 1.0. Significantly, MSCP exhibited a maximum adsorption capacity of 102.04 mg/g, which matches the Langmuir model at pH 6.0 and 298.15 K, and points to the pseudo-second-order kinetics of the chemisorption process of Pb(II) on MSCP. These findings highlight the great potential of MSCP for Pb(II) removal from aqueous solution, making it a promising solution for Pb(II) contamination in wastewater.

3.
J Cell Physiol ; 238(5): 1046-1062, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36924049

RESUMO

Hyperinsulinemia is a critical risk factor for the pathogenesis of insulin resistance (IR) in metabolic tissues, including the liver. Ethanolamine phosphate phospholyase (ETNPPL), a newly discovered metabolic enzyme that converts phosphoethanolamine (PEA) to ammonia, inorganic phosphate, and acetaldehyde, is abundantly expressed in liver tissue. Whether it plays a role in the regulation of hyperinsulinemia-induced IR in hepatocytes remains elusive. Here, we established an in vitro hyperinsulinemia-induced IR model in the HepG2 human liver cancer cell line and primary mouse hepatocyte via a high dose of insulin treatment. Next, we overexpressed ETNPPL by using lentivirus-mediated ectopic to investigate the effects of ETNPPL per se on IR without insulin stimulation. To explore the underlying mechanism of ETNPPL mediating hyperinsulinemia-induced IR in HepG2, we performed genome-wide transcriptional analysis using RNA sequencing (RNA-seq) to identify the downstream target gene of ETNPPL. The results showed that ETNPPL expression levels in both mRNA and protein were significantly upregulated in hyperinsulinemia-induced IR in HepG2 and primary mouse hepatocytes. Upon silencing ETNPPL, hyperinsulinemia-induced IR was ameliorated. Under normal conditions without IR in hepatocytes, overexpressing ETNPPL promotes IR, reactive oxygen species (ROS) generation, and AKT inactivation. Transcriptome analysis revealed that salt-inducible kinase 1 (SIK1) is markedly downregulated in the ETNPPL knockdown HepG2 cells. Moreover, disrupting SIK1 prevents ETNPPL-induced ROS accumulation, damage to the PI3K/AKT pathway and IR. Our study reveals that ETNPPL mediates hyperinsulinemia-induced IR through the SIK1/ROS-mediated inactivation of the PI3K/AKT signaling pathway in hepatocyte cells. Targeting ETNPPL may present a potential strategy for hyperinsulinemia-associated metabolic disorders such as type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Hiperinsulinismo , Resistência à Insulina , Animais , Humanos , Camundongos , Diabetes Mellitus Tipo 2/metabolismo , Hepatócitos/metabolismo , Hiperinsulinismo/genética , Hiperinsulinismo/metabolismo , Insulina/metabolismo , Resistência à Insulina/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
4.
Exp Eye Res ; 226: 109311, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36403849

RESUMO

Retinal explant cultures provide a valuable system to study retinal function in vitro. This study established a new retinal explant culture method to prolong the survival of retinal ganglion cells (RGCs). Explants were prepared in two different ways: with or without optic nerve. Retinas from newborn mice that had received an injection of MitoTracker Red into the contralateral superior colliculus to label axonal mitochondria were cultured as organotypic culture for 7 days in vitro. At several time points during the culture, viability of RGCs was assessed by multi-electrode array recording, and morphology by immunohistochemical methods. During the culture, the thickness of the retinal tissue in both groups gradually decreased, however, the structure of the layers of the retina could be identified. Massive apoptosis in the retinal ganglion cell layer (GCL) appeared on the first day of culture, thereafter the number of apoptotic cells decreased. Glial activation was observed throughout the culture, and there was no difference in morphology between the two groups. RGCs loss was exacerbated on 3rdday of culture, and RGCs loss in retinal explants with preserved optic nerve was significantly lower than in retinas that did not preserve the optic nerve. More and longer-lasting mitochondrial signals were observed in the injured area of the optic nerve-preserving explants. Retinal explants provide an invaluable tool for studying retinal function and developing treatments for ocular diseases. The optic nerve-preserving culture helps preserve the integrity of RGCs. The higher number of mitochondria in the nerve-preserving cultures may help maintain viability of RGCs.


Assuntos
Traumatismos do Nervo Óptico , Células Ganglionares da Retina , Camundongos , Animais , Células Ganglionares da Retina/metabolismo , Retina/metabolismo , Axônios/metabolismo , Nervo Óptico , Mitocôndrias , Traumatismos do Nervo Óptico/metabolismo
5.
Phys Chem Chem Phys ; 25(46): 31928-31935, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37974438

RESUMO

The phase transition of the ß-HMX crystal has been widely studied under high pressure, but the microscopic transition mechanism is not sufficiently understood. In this article, we perform a series of ab initio molecular dynamics simulations focusing on structure deformation and the corresponding vibration spectra resolution of ß-HMX at 0-40 GPa. Several typical pressure-induced phase transition processes are confirmed by analyzing the chemical bond, dihedral angle, charge transfer, and IR and Raman spectra. The corresponding relationship between molecular structure and spectral signal is constructed through the partial spectra calculations of special functional groups within the HMX molecule. The anisotropic effects of different groups on the initial structural phase transition are uncovered. The equatorial C-N and axial N-N bonds have the largest compression ratio as pressure increases, which is the intrinsic factor for the initiation of structure transformation. The C-N molecular ring plays an important role in the entire phase transition process. In addition, the phase transition of ß â†’ ζ is also closely related to the deformation of NO2, while that of ζ → ε is induced by the axial N-NO2 group. Regarding the higher-pressure phase transition, the synergetic effect of N-NO2, CH2 groups, and molecular rings becomes more considerable.

6.
Int J Mol Sci ; 24(16)2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37628750

RESUMO

The structure and properties of nano-carbon materials formed in explosives detonation are always a challenge, not only for the designing and manufacturing of these materials but also for clearly understanding the detonation performance of explosives. Herein, we study the dynamic evolution process of condensed-phase carbon involved in 2,4,6-Triamino-1,3,5-trinitrobenzene (TATB) detonation using the quantum-based molecular dynamics method. Various carbon structures such as, graphene-like, diamond-like, and "diaphite", are obtained under different pressures. The transition from a C sp2- to a sp3-hybrid, driven by the conversion of a hexatomic to a non-hexatomic ring, is detected under high pressure. A tightly bound nucleation mechanism for diamond-like carbon dominated by a graphene-like carbon layer is uncovered. The graphene-like layer is readily constructed at the early stage, which would connect with surrounding carbon atoms or fragments to form the tetrahedral structure, with a high fraction of sp3-hybridized carbon. After that, the deformed carbon layers further coalesce with each other by bonding between carbon atoms within the five-member ring, to form the diamond-like nucleus. The complex "diaphite" configuration is detected during the diamond-like carbon nucleation, which illustrates that the nucleation and growth of detonation nano-diamond would accompany the intergrowth of graphene-like layers.


Assuntos
Substâncias Explosivas , Grafite , Carbono , Núcleo Celular , Trinitrobenzenos
7.
Plant Cell Environ ; 45(5): 1442-1456, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35040157

RESUMO

The timely transition from vegetative to reproductive development is coordinated through the quantitative regulation of floral pathway genes in response to physiological and environmental cues. The function of ethylene-responsive element-binding protein (ERF) transcription factors in the regulation of flowering in chrysanthemum (Chrysanthemum morifolium Ramat.) is not well understood. Here, chrysanthemum overexpressing CmERF110 flowered earlier than the wild-type plants, while those in which CmERF110 was suppressed flowered later. RNA-seq results revealed that several genes involved in the circadian rhythm were transcribed differently in CmERF110 transgenic plants from that of the wild-type plants. The rhythm peak of the circadian clock genes in transgenic plants was delayed. Yeast two-hybrid screening of CmERF110 interactors identified a chrysanthemum FLOWERING LOCUS KH DOMAIN (FLK) homologue CmFLK, which was further confirmed with both in vitro and in vivo assays. KEGG pathway enrichment also revealed that CmFLK is involved in the regulation of circadian rhythm-related genes. CmFLK transgenic plants showed a change in flowering time and delayed rhythm peak of the circadian rhythm genes. Taken together, the present data not only suggest that CmERF110 interacts with CmFLK to promote floral transition by tuning the circadian clock, but also provides evidence for the evolutionary conservation of the components in the autonomous pathway in chrysanthemum.


Assuntos
Proteínas de Arabidopsis , Chrysanthemum , Proteínas de Arabidopsis/metabolismo , Chrysanthemum/genética , Chrysanthemum/metabolismo , Ritmo Circadiano/genética , Etilenos , Flores/fisiologia , Regulação da Expressão Gênica de Plantas , Fotoperíodo , Plantas Geneticamente Modificadas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Ecotoxicol Environ Saf ; 233: 113290, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35158255

RESUMO

Chlorobisphenol A (ClxBPA) is a kind of novel estrogenic compounds. The present study aims to investigate the effects of three ClxBPA compounds on the kisspeptin/G protein-coupled receptor 54 (GPR54, also named KissR1)-gonadotropin-releasing hormone (GnRH) (KGG) system in neuronal GT1-7 cells with mechanistic insights by estrogen receptor signaling pathways. The study demonstrated that low-concentration ClxBPA induced the cell proliferation, promoted GnRH secretion, upregulated the expression of KGG neuroendocrine signal-related proteins (KissR1, GnRH1 and kisspeptin) and genes including Kiss1, GnRH1, KissR1, luteinizing hormone receptor (Lhr) and follicle-stimulating hormone receptor (Fshr) in GT1-7 cells. Additionally, ClxBPA activated nuclear estrogen receptor alpha (ERα) and member estrogen receptor G protein-coupled estrogen receptor (GPER)-regulated phosphatidylinositol-3-kinase/protein kinase B (PI3K/Akt) and extracellular signal-regulated kinase (Erk1/2) signaling pathways. Pretreatment of GT1-7 cells with GPER inhibitor G15 and ERα inhibitor ICI reduced the expression of KissR1, GnRH1 and kisspeptin proteins, attenuated mRNA levels of Kiss1, GnRH1, KissR1, Fshr and Lhr genes, and decreased ClxBPA-induced GT1-7 cell proliferation. The results suggested that ClxBPA activated the KGG neuroendocrine signals and induced the proliferation of GT1-7 cells via ERα and GPER signaling pathways. This study provides a new perspective to explore the neuroendocrine toxicity mechanism of ClxBPA. CAPSULE: ClxBPA activated KGG neuroendocrine signaling pathway via ERα and GPER and induced the proliferation of GT1-7 cells.


Assuntos
Receptor alfa de Estrogênio , Kisspeptinas , Linhagem Celular , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Estrogênios , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Fosfatidilinositol 3-Quinases
9.
Molecules ; 27(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35566138

RESUMO

Plastic-bonded explosives (PBXs) consisting of explosive grains and a polymer binder are commonly synthesized to improve mechanical properties and reduce sensitivity, but their intrinsic chemical behaviors while subjected to stress are not sufficiently understood yet. Here, we construct three composites of ß-HMX bonded with the HTPB binder to investigate the reaction characteristics under shock loading using the quantum-based molecular dynamics method. Six typical interactions between HMX and HTPB molecules are detected when the system is subjected to pressure. Although the initial electron structure is modified by the impurity states from HTPB, the metallization process for HMX does not significantly change. The shock decompositions of HMX/HTPB along the (100) and (010) surface are initiated by molecular ring dissociation and hydrogen transfer. The initial oxidations of C and H within HTPB possess advantages. As for the (001) surface, the dissociation is started with alkyl dehydrogenation oxidation, and a stronger hydrogen transfer from HTPB to HMX is detected during the following process. Furthermore, considerable fragment aggregation is observed, which mainly derives from the formation of new C-C and C-N bonds under high pressure. The effect of cluster evolution on the progression of the following reaction is further studied by analyzing the bonded structure and displacement rate.

10.
Ecotoxicol Environ Saf ; 165: 144-152, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30195206

RESUMO

Bisphenol F (BPF), one of the alternatives to bisphenol A (BPA), can induce proliferation through the nuclear estrogen receptor ERα (estrogen receptor alpha) pathway in human breast cancer MCF-7 cells. However, the roles of membrane estrogen receptor GPER1 (G-protein-coupled receptor 1)-mediated signaling pathways in MCF-7 cell proliferation caused by BPF are unclear. The influence of BPF on MCF-7 cells was evaluated in terms of cell proliferation, intracellular calcium (Ca2+) fluctuations, and reactive oxygen species (ROS) generation. The molecular mechanisms of the cellular responses to low doses of BPF were studied through detecting the activations of ERα and GPER1-regulated PI3K/PKB or AKT (phosphatidylinotidol 3-kinase/protein kinase B) and ERK1/2 (extracellular-signa1-regulated kinase 1/2) signals. At 0.01-1 µM, BPF significantly promoted cell proliferation and elevated the levels of intracellular ROS and Ca2+. At these concentrations, BPF also significantly upregulated protein expressions of ERα, GPER1, c-myc, and cyclin D and phosphorylations of PKB and ERK1/2. Specific signal inhibitors decreased PKB and ERK1/2 phosphorylations and attenuated the effects of BPF. Silencing of GPER1 also significantly decreased BPF-induced cell proliferation. These results indicate that activating the GPER1-PI3K/PKB and ERK1/2 signals by low doses of BPF can regulate the response of MCF-7 cells and that ERα also influences the effects of exposure to BPF on the cells. The present study suggests a new mechanism by which BPF exerts relevant estrogenic action in cancer cells and also highlights the potential risks in using BPF as an alternative to BPA.


Assuntos
Compostos Benzidrílicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Receptor alfa de Estrogênio/metabolismo , Fenóis/farmacologia , Receptores de Estrogênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos , Cálcio/metabolismo , Proliferação de Células/genética , Ciclina D/metabolismo , Inativação Gênica , Humanos , Células MCF-7 , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptores de Estrogênio/genética , Receptores Acoplados a Proteínas G/genética
11.
Carcinogenesis ; 38(4): 474-483, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28334197

RESUMO

Carnitine palmitoyltransferase 1C (CPT1C), an enzyme located in the outer mitochondria membrane, has a crucial role in fatty acid transport and oxidation. It is also involved in cell proliferation and is a potential driver for cancer cell senescence. However, its upstream regulatory mechanism is unknown. Peroxisome proliferator activated receptor α (PPARα) is a ligand-activated transcription factor that regulates lipid metabolism and tumor progression. The current study aimed to elucidate whether and how PPARα regulates CPT1C and then affects cancer cell proliferation and senescence. Here, for the first time we report that PPARα directly activated CPT1C transcription and CPT1C was a novel target gene of PPARα, as revealed by dual-luciferase reporter and chromatin immunoprecipitation (ChIP) assays. Moreover, regulation of CPT1C by PPARα was p53-independent. We further confirmed that depletion of PPARα resulted in low CPT1C expression and then inhibited proliferation and induced senescence of MDA-MB-231 and PANC-1 tumor cell lines in a CPT1C-dependent manner, while forced PPARα overexpression promoted cell proliferation and reversed cellular senescence. Taken together, these results indicate that CPT1C is a novel PPARα target gene that regulates cancer cell proliferation and senescence. The PPARα-CPT1C axis may be a new target for the intervention of cancer cellular proliferation and senescence.


Assuntos
Carnitina O-Palmitoiltransferase/genética , Proliferação de Células/genética , Senescência Celular/genética , PPAR alfa/genética , Linhagem Celular , Linhagem Celular Tumoral , Regulação da Expressão Gênica/genética , Células HEK293 , Humanos , Metabolismo dos Lipídeos/genética , Mitocôndrias/genética , Neoplasias/genética , Oxirredução
12.
Water Environ Res ; 89(8): 694-702, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28120740

RESUMO

Dissolved oxygen (DO), were investigated. Aerobic conditions were effectively developed in 50 cm depth of the matrix and anoxic or anaerobic conditions were not changed in 80 and 110 cm depth by intermittent aeration, which encouraged nitrification. Increased influent COD/N ratio led to lower COD and nitrogen removal in conventional SWISs. Sufficient carbon source in high COD/N ratio influent promoted denitrification with intermittent aeration. High removal rates of COD (95.68 ± 0.21%), TP (92.02 ± 0.28%), -N (99.33 ± 0.05%), and - (89.65 ± 0.6%) were obtained with influent COD/N ratio of 12 in aerated SWISs. Under the COD/N ratio of 12 and 18, intermittent aeration boosted the growth and reproduction of nitrifying bacteria and denitrifying bacteria. Meanwhile, nitrate and nitrite reductase activities with intermittent aeration were higher than that without aeration in 80 and 110 cm depths.


Assuntos
Análise da Demanda Biológica de Oxigênio , Nitrogênio/química , Oxigênio/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Compostos de Amônio , Engenharia Sanitária
13.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 42(4): 400-405, 2017 Apr 28.
Artigo em Zh | MEDLINE | ID: mdl-28490697

RESUMO

OBJECTIVE: To evaluate the effect of left ventricular hypertrophy and deformation on cardiac function in patients with uremic cardiomyopathy (UCM) by using the technology of two dimensional speckle tracking imaging (2D-STI).
 Methods: A total of 67 UCM patients were randomly divided into the normal cardiac function group (subgroup A, 32 cases) and the abnormal cardiac function group (subgroup B, 35 cases) according to the New York Heart Association points (NYHA-P). A total of 30 healthy subjetcs served as the control group. Parameters including left ventricular ejection fraction (LVEF), left ventricular mass index (LVMI), left ventricular spherical index (LVSI), left ventricular myocardial mean radial strain (MRS), mean radial strain rate (MRSR), mean longitudinal strain (MLS), local systolic twist angle (STA), and mitral annulus maximum displacement (TMAD) were detected.
 Results: MLS, MRS, MRSR, LVSI, STA and TMAD in the Group A and Group B were lower than that in the control group (P<0.05), and LVMI in the Group A and Group B was increased than those in the control group (P<0.05); LVEF, MLS, MRS, MRSR, LVSI and STA in the Group B was decreased than that in the Group A (P<0.05). MLS in the Group A and B were positively correlated with LVEF and LVSI, but negatively correlated with LVMI. Using the point of 14.10% for MLS to evaluate UCM patients with NYHA-P>4 points, the sensitivity, the specificity and Yuedden index were 90.5%, 71% and 0.585, respectively. STA in UCM patients were lower than that in the control (P<0.05).
 Conclusion: 2D-STI possesses a unique advantage in detecting left ventricular strain and strain rate on left ventricular regional function in UCM with left ventricular hypertrophy and ventricular deformation. There is no direct correlation between the left ventricular hypertrophy and ventricular deformation, but the ventricular hypertrophy and deformation are correlated with regional cardiac function and clinical cardiac function. Left ventricular regional dysfunction may occur before cardiac hypertrophy and deformation.


Assuntos
Ecocardiografia/métodos , Hipertrofia Ventricular Esquerda/fisiopatologia , Disfunção Ventricular Esquerda/fisiopatologia , Cardiomiopatias/etiologia , Cardiomiopatias/fisiopatologia , Feminino , Testes de Função Cardíaca/métodos , Humanos , Hipertrofia Ventricular Esquerda/complicações , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Uremia/complicações , Disfunção Ventricular Esquerda/complicações
14.
Small ; 10(19): 3901-6, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-24861520

RESUMO

Three quantum dots (QDs) nanofluids modified with different lengths of PEG chainsare synthesized, and the property-structure relationship of QDs nanofluids is established, to achieve QDs nanofluids with tunable fluidic or optical performance. Notably, the proposed QDs nanofluids demonstrate a selective response towards Cu(2+)-based on both fluorescence and contact angle.

15.
Food Chem Toxicol ; 183: 114258, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38040238

RESUMO

This study evaluated the effects of Cl3BPA on kisspeptin-G-protein coupled receptor 54 (GPR54)/gonadotropin-releasing hormone (GnRH) (KGG) signals and analyzed the roles of estrogen receptor alpha (ERɑ) and G-protein coupled estrogen receptor 1 (GPER1) in regulating KGG signals. The results showed that Cl3BPA at 50 µM increased the levels of intracellular reactive oxygen species (ROS) and GnRH, upregulated the protein levels of kisspeptin and the expression of fshr, lhr and gnrh1 genes related to KGG in GT1-7 cells. In addition, 50 µM Cl3BPA significantly upregulated the phosphorylation of extracellular regulated protein kinases 1/2 (Erk1/2), the protein levels of GPER1 and the expression of the gper1 as well as the most target genes associated with mitogen-activated protein kinase (MAPK)/Erk1/2 pathways. Specific signal inhibitor experiments found that Cl3BPA activated KGG signals by activating the GPER1-mediated MAPK/Erk1/2 signaling pathway at the mRNA level. A docking test further confirmed the interactions between Cl3BPA and GPER1. The findings suggest that Cl3BPA might induce precocious puberty by increasing GnRH secretion together with KGG signaling upregulation, which is driven by GPER1-mediated signaling pathway. By comparison, ClxBPAs with fewer chlorine atoms had more obvious effects on the expression of proteins and partial genes related to KGG signals in GT1-7 cells.


Assuntos
Kisspeptinas , Maturidade Sexual , Kisspeptinas/genética , Kisspeptinas/metabolismo , Kisspeptinas/farmacologia , Linhagem Celular , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Transdução de Sinais
16.
J Gastrointest Oncol ; 14(1): 220-232, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36915444

RESUMO

Background: Colorectal cancer (CRC) is a heterogeneous group of malignancies distinguished by distinct clinical features. The association of these features with venous thromboembolism (VTE) is yet to be clarified. Machine learning (ML) models are well suited to improve VTE prediction in CRC due to their ability to receive the characteristics of a large number of features and understand the dataset to obtain implicit correlations. Methods: Data were extracted from 4,914 patients with colorectal cancer between August 2019 and August 2022, and 1,191 patients who underwent surgery on the primary tumor site with curative intent were included. The variables analyzed included patient-level factors, cancer-level factors, and laboratory test results. Model training was conducted on 30% of the dataset using a ten-fold cross-validation method and model validation was performed using the total dataset. The primary outcome was VTE occurrence in postoperative 30 days. Six ML algorithms, including logistic regression (LR), random forest (RF), extreme gradient boosting (XGBoost), weighted support vector machine (SVM), a multilayer perception (MLP) network, and a long short-term memory (LSTM) network, were applied for model fitting. The model evaluation was based on six indicators, including receiver operating characteristic curve-area under the curve (ROC-AUC), sensitivity (SEN), specificity (SPE), positive predictive value (PPV), negative predictive value (NPV), and Brier score. Two previous VTE models (Caprini and Khorana) were used as the benchmarks. Results: The incidence of postoperative VTE was 10.8%. The top ten significant predictors included lymph node metastasis, C-reactive protein, tumor grade, anemia, primary tumor location, sex, age, D-dimer level, thrombin time, and tumor stage. In our results, the XGBoost model showed the best performance, with a ROC-AUC of 0.990, a SEN of 96.9%, a SPE of 96.1% in training dataset and a ROC-AUC of 0.908, a SEN of 77.5%, a SPE of 93.7% in validation dataset. All ML models outperformed the previously developed models (Caprini and Khorana). Conclusions: This study developed postoperative VTE predictive models using six ML algorithms. The XGBoost VTE model might supply a complementary tool for clinical VTE prophylaxis decision-making and the proposed risk factors could shed some light on VTE risk stratification in CRC patients.

17.
Vaccines (Basel) ; 11(10)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37896991

RESUMO

Interferon (IFN) is a cell-secreted cytokine possessing biological activities including antiviral functioning, immune regulation, and others. Interferon-alpha (IFN-α) mainly derives from plasmacytoid dendritic cells, which activate natural killer cells and regulate immune responses. IFN-α responds to the primary antiviral mechanism in the innate immune system, which can effectively cure acute infectious diseases. Pseudorabies (PR) is an acute infectious disease caused by pseudorabies virus (PRV). The clinical symptoms of PRV are as follows: reproductive dysfunction among pregnant sows and high mortality rates among piglets. These pose a severe threat to the swine industry. Related studies show that IFN-α has broad applications in preventing and treating viral diseases. Therefore, a PRV mouse model using artificial infection was established in this study to explore the pathogenic effect of IFN-α on PRV. We designed a sequence with IFN-α4 (M28623, Genbank) and cloned it on the lentiviral vector. CHO-K1 cells were infected and identified using WB and RT-PCR; a CHO-K1 cell line with a stable expression of the recombinant protein PoIFN-α was successfully constructed. H&E staining and virus titer detection were used to investigate the recombinant protein PoIFN-α's effect on PR in BALB/c mice. The results show that the PoIFN-α has a preventive and therapeutic impact on PR. In conclusion, the recombinant protein can alleviate symptoms and reduce the replication of PRV in vivo.

18.
J Hazard Mater ; 422: 126856, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34399211

RESUMO

Simultaneously removing heavy metal and dye from complex wastewater is of great significance to industrial wastewater treatment. Herein, a novel magnetic adsorbent, DTPA-modified chitosan-coated magnetic silica nanoparticle (FFO@Sil@Chi-DTPA), was successfully prepared and used to enhance the Pb(II) selective adsorption from multi-metal wastewater based on anion-synergism. In the competitive experiment conducted in a multi-ion solution, the type of selective adsorption of metals was changed by the adsorbents before and after amidation, in which FFO@Sil@Chi-DTPA exhibited an excellent selectively for capturing Pb(II), while FFO@Sil@Chi demonstrated highly selective adsorption of silver. More importantly, the selective adsorption of Pb(II)S by FFO@Sil@Chi-DTPA was enhanced from 111.71 to 268.01 mg g-1 when the coexisting MB concentrations ranged from 0 to 100 mg L-1 at pH 6.0. In the Pb(II)-MB binary system, Pb(II) and MB exhibited a synergistic effect, in which the presence of MB strengthened the adsorption effect of Pb(II) due to the sulfonic acid groups in MB molecules that create new specific sites for Pb(II) adsorption, while MB adsorption was also enhanced by the presence of Pb(II). This work provides a new strategy for exploring novel adsorbents that can enhance the selective removal of heavy metal in complex wastewater based on anion-synergism.


Assuntos
Quitosana , Nanopartículas , Poluentes Químicos da Água , Adsorção , Ânions , Concentração de Íons de Hidrogênio , Cinética , Chumbo , Fenômenos Magnéticos , Ácido Pentético , Dióxido de Silício , Águas Residuárias , Poluentes Químicos da Água/análise
19.
ACS Omega ; 7(24): 21255-21261, 2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35755330

RESUMO

How to improve the dehydrogenation properties of ammonia borane (AB, NH3BH3) is always a challenge for its practical application in hydrogen storage. In this study, we reveal the enhanced effect of an external electric field (E ext) on AB dehydrogenation by means of the ab initio molecular dynamics method. The molecular rotation induced by an electrostatic force can facilitate the formation of the H-N···B-H framework, which would aggregate into poly-BN species and further suppress the generation of the volatile byproducts. Meanwhile, the dihydrogen bond (N-Hδ+···Î´-H-B) is favorably formed under E ext, and the interaction between relevant H atoms is enhanced, leading to a faster H2 liberation. Correspondingly, the apparent activation energy for AB dissociation is greatly reduced from 18.42 to around 15 kcal·mol-1 with the application of an electric field, while that for H2 formation decreases from 20.4 to about 16 kcal·mol-1. In the whole process, the cleavage of the B-H bond is more favorable than that of the N-H bond, no matter whether the application of E ext. Our results give a deep insight into a positive effect of an electric field on AB dehydrogenation, which would provide an important inspiration for hydrogen storage in industry applications.

20.
Oxid Med Cell Longev ; 2022: 2419412, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338341

RESUMO

Arginase is a ubiquitous enzyme in the urea cycle (UC) that hydrolyzes L-arginine to urea and L-ornithine. Two mammalian arginase isoforms, arginase1 (ARG1) and arginase2 (ARG2), play a vital role in the regulation of ß-cell functions, insulin resistance (IR), and vascular complications via modulating L-arginine metabolism, nitric oxide (NO) production, and inflammatory responses as well as oxidative stress. Basic and clinical studies reveal that abnormal alterations of arginase expression and activity are strongly associated with the onset and development of diabetes mellitus (DM) and its complications. As a result, targeting arginase may be a novel and promising approach for DM treatment. An increasing number of arginase inhibitors, including chemical and natural inhibitors, have been developed and shown to protect against the development of DM and its complications. In this review, we discuss the fundamental features of arginase. Next, the regulatory roles and underlying mechanisms of arginase in the pathogenesis and progression of DM and its complications are explored. Furthermore, we review the development and discuss the challenges of arginase inhibitors in treating DM and its related pathologies.


Assuntos
Arginase , Diabetes Mellitus , Animais , Humanos , Arginase/metabolismo , Arginina/metabolismo , Óxido Nítrico/metabolismo , Ureia , Diabetes Mellitus/tratamento farmacológico , Mamíferos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA