Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(6): e2304619121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38289962

RESUMO

Resistance to neoadjuvant chemotherapy leads to poor prognosis of locally advanced rectal cancer (LARC), representing an unmet clinical need that demands further exploration of therapeutic strategies to improve clinical outcomes. Here, we identified a noncanonical role of RB1 for modulating chromatin activity that contributes to oxaliplatin resistance in colorectal cancer (CRC). We demonstrate that oxaliplatin induces RB1 phosphorylation, which is associated with the resistance to neoadjuvant oxaliplatin-based chemotherapy in LARC. Inhibition of RB1 phosphorylation by CDK4/6 inhibitor results in vulnerability to oxaliplatin in both intrinsic and acquired chemoresistant CRC. Mechanistically, we show that RB1 modulates chromatin activity through the TEAD4/HDAC1 complex to epigenetically suppress the expression of DNA repair genes. Antagonizing RB1 phosphorylation through CDK4/6 inhibition enforces RB1/TEAD4/HDAC1 repressor activity, leading to DNA repair defects, thus sensitizing oxaliplatin treatment in LARC. Our study identifies a RB1 function in regulating chromatin activity through TEAD4/HDAC1. It also provides the combination of CDK4/6 inhibitor with oxaliplatin as a potential synthetic lethality strategy to mitigate oxaliplatin resistance in LARC, whereby phosphorylated RB1/TEAD4 can serve as potential biomarkers to guide the patient stratification.


Assuntos
Terapia Neoadjuvante , Neoplasias Retais , Humanos , Oxaliplatina/farmacologia , Terapia Neoadjuvante/métodos , Neoplasias Retais/tratamento farmacológico , Neoplasias Retais/genética , Quimiorradioterapia/métodos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Cromatina , Resultado do Tratamento , Fatores de Transcrição de Domínio TEA , Ubiquitina-Proteína Ligases , Proteínas de Ligação a Retinoblastoma
2.
Acc Chem Res ; 57(5): 763-775, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38386871

RESUMO

ConspectusPolycyclic (hetero)aromatic hydrocarbons (PAHs) have emerged as a focal point in current interdisciplinary research, spanning the realms of chemistry, physics, and materials science. Possessing distinctive optical, electronic, and magnetic properties, these π-functional materials exhibit significant potential across diverse applications, including molecular electronic devices, organic spintronics, and biomedical functions, among others. Despite the extensive documentation of various PAHs over the decades, the efficient and precise synthesis of π-extended PAHs remains a formidable challenge, hindering their broader application. This challenge is primarily attributed to the intricate and often elusive nature of their synthesis, compounded by issues related to low solubility and unfavored stability.The development of π-building blocks that can be facilely and modularly transformed into diverse π-frameworks constitutes a potent strategy for the creation of novel PAH materials. For instance, based on the classic perylene diimide (PDI) unit, researchers such as Würthner, Wang, and Nuckolls have successfully synthesized a plethora of structurally diverse PAHs, as well as numerous other π-functional materials. However, until now the availability of such versatile building blocks is still severely limited, especially for those simultaneously having a facile preparation process, adequate solubilizing groups, favored material stability, and critically, rich possibilities for structural extension spaces.In this Account, we present an overview of our invention of a highly versatile bay-/ortho-octa-substituted perylene building block, designated as Per-4Br, for the construction of a series of novel PAH scaffolds with tailor-made structures and rich optoelectronic and magnetic properties. First, starting with a brief discussion of current challenges associated with the bottom-up synthesis of π-extended PAHs, we rationalize the key features of Per-4Br that enable facile access to new PAH molecules including its ease of large-scale preparation, favored material stability and solubility, and multiple flexible reaction sites, with a comparison to the PDI motif. Then, we showcase our rational design and sophisticated synthesis of a body of neutral or charged, closed- or open-shell, curved, or planar PAHs via controlled annulative π-extensions in different directions such as peripheral, diagonal, or multiple dimensions of the Per-4Br skeleton. In this part, the fundamental structure-property relationships between molecular conformations, electronic structures, and self-assembly behaviors of these PAHs and their unique physiochemical properties such as unusual open-shell ground states, global aromaticity, state-associated/stimuli-responsive magnetic activity, and charge transport characteristics will be emphatically elaborated. Finally, we offer our perspective on the continued advancement of π-functional materials based on Per-4Br, which, we posit, may stimulate heightened research interest in the versatile structural motifs typified by Per-4Br, consequently catalyzing further progress in the realm of organic π-functional materials.

3.
Ann Neurol ; 96(1): 74-86, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38501714

RESUMO

OBJECTIVE: To determine the association between the preoperative Bioenergetic Health Index (BHI) of platelets and the occurrence of postoperative delirium (POD) in elderly patients. METHODS: Elderly patients scheduled for major abdominal surgery under general anesthesia were included. The presence of POD was assessed within the 3 days after surgery. Seahorse XF analysis and transmission electron microscopy were utilized to evaluate the mitochondrial metabolism and morphology of platelets. RESULTS: A total of 20 out of 162 participants developed POD. Participants with POD showed lower preoperative Mini-Mental State Examination scores and total protein levels, fewer educational years, longer surgery duration, higher mean platelet volume, and lower platelet BHI compared with those without POD. Damaged mitochondria with swollen appearance and distorted cristae was detected in platelets from participants with POD. Preoperative platelet BHI was independently associated with the occurrence of POD after adjusting for age, education, preoperative Mini-Mental State Examination score, preoperative mean platelet volume and total protein levels, surgical type and duration, and lymphocyte counts on the first postoperative day (OR 0.11, 95% CI 0.03-0.37, p < 0.001). The areas under the receiver operating curves for predicting POD were 0.83 (95% CI 0.76-0.88) for platelet BHI. It showed a sensitivity of 85.00% and specificity of 73.24%, with an optimal cutoff value of 1.61. Using a serial combination (mean platelet volume followed by BHI) yielded a sensitivity of 80.00% and specificity of 82.39%. INTERPRETATION: Preoperative platelet BHI was independently associated with the occurrence of POD in elderly patients and has the potential as a screening biomarker for POD risk. ANN NEUROL 2024;96:74-86.


Assuntos
Biomarcadores , Plaquetas , Mitocôndrias , Complicações Pós-Operatórias , Humanos , Idoso , Masculino , Feminino , Plaquetas/metabolismo , Biomarcadores/sangue , Mitocôndrias/metabolismo , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/sangue , Idoso de 80 Anos ou mais , Delírio/sangue , Delírio/diagnóstico , Delírio/etiologia
4.
BMC Med ; 22(1): 189, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715017

RESUMO

BACKGROUND: Sleep loss is a common public health problem that causes hyperalgesia, especially that after surgery, which reduces the quality of life seriously. METHODS: The 48-h sleep restriction (SR) mouse model was created using restriction chambers. In vivo imaging, transmission electron microscopy (TEM), immunofluorescence staining and Western blot were performed to detect the status of the blood-spinal cord barrier (BSCB). Paw withdrawal mechanical threshold (PWMT) was measured to track mouse pain behavior. The role of infiltrating regulatory T cells (Tregs) and endothelial cells (ECs) in mouse glycolysis and BSCB damage were analyzed using flow cytometry, Western blot, CCK-8 assay, colorimetric method and lactate administration. RESULTS: The 48-h SR made mice in sleep disruption status and caused an acute damage to the BSCB, resulting in hyperalgesia and neuroinflammation in the spinal cord. In SR mice, the levels of glycolysis and glycolysis enzymes of ECs in the BSCB were found significantly decreased [CON group vs. SR group: CD31+Glut1+ cells: p < 0.001], which could cause dysfunction of ECs and this was confirmed in vitro. Increased numbers of infiltrating T cells [p < 0.0001] and Treg population [p < 0.05] were detected in the mouse spinal cord after 48-h SR. In the co-cultured system of ECs and Tregs in vitro, the competition of Tregs for glucose resulted in the glycolysis disorder of ECs [Glut1: p < 0.01, ENO1: p < 0.05, LDHα: p < 0.05; complete tubular structures formed: p < 0.0001; CCK8 assay: p < 0.001 on 24h, p < 0.0001 on 48h; glycolysis level: p < 0.0001]. An administration of sodium lactate partially rescued the function of ECs and relieved SR-induced hyperalgesia. Furthermore, the mTOR signaling pathway was excessively activated in ECs after SR in vivo and those under the inhibition of glycolysis or co-cultured with Tregs in vitro. CONCLUSIONS: Affected by glycolysis disorders of ECs due to glucose competition with infiltrating Tregs through regulating the mTOR signaling pathway, hyperalgesia induced by 48-h SR is attributed to neuroinflammation and damages to the barriers, which can be relieved by lactate supplementation.


Assuntos
Células Endoteliais , Glucose , Hiperalgesia , Privação do Sono , Medula Espinal , Linfócitos T Reguladores , Animais , Linfócitos T Reguladores/imunologia , Camundongos , Glucose/metabolismo , Células Endoteliais/metabolismo , Medula Espinal/metabolismo , Medula Espinal/patologia , Masculino , Privação do Sono/complicações , Glicólise/fisiologia , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
5.
Anesth Analg ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38507554

RESUMO

BACKGROUND: Neuropathic pain (NP) is a highly challenging condition with complex pathological mechanisms, and the spinal gamma aminobutyric acid A receptor receptor plays a crucial role in its progression. Recent studies have revealed a potential interaction between neuroplastin 65 (NP65) and gamma aminobutyric acid A receptor α2 subunit (GABAAR-α2) on the cell surface. We hypothesize that NP65 is involved in the pathogenesis of NP by regulating the level of GABAAR-α2. METHODS: A chronic constrictive injury (CCI) pain model was established in male Sprague-Dawley rats to verify the change in spinal NP65 expression. Alterations in pain behavior and GABAAR-α2 protein expression were observed after intrathecal injection of NP65 overexpressing adeno-associated virus (AAV) in CCI rats. In vitro investigations on Neuroblastoma 2a cells, the effect of NP65 on GABAAR-α2 expression via the calcineurin-nuclear factor of activated T-cell 4 (CaN-NFATc4) signaling pathway was evaluated by manipulating NP65 expression. RESULTS: The expression level of NP65 protein and mRNA in the CCI group were significantly decreased (P < .05; analysis of variance [ANOVA]). After intrathecal injection of NP65, overexpression of AAV and pain behavior in CCI rats were significantly alleviated, and levels of GABAAR-α2 were upregulated. In vitro experiments verified alterations in the expression of GABAAR-α2, CaN, and phosphorylated NFATc4 on the application of NP65 with plasmid or small interfering RNA, respectively. After the application of the specific CaN inhibitor cyclosporine A (CsA), the changes in NP65 expression did not produce subsequent alterations in the expression of GABAAR-α2, CaN, or phosphorylated NFATc4 proteins. CONCLUSIONS: NP65 modulates the level of GABAAR-α2 through the CaN-NFATc4 signaling pathway, which may serve as the underlying mechanism of NP.

6.
Anesth Analg ; 139(2): 411-419, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38241681

RESUMO

BACKGROUND: The microglial activation has been implicated in cancer-induced bone pain. Recent studies have revealed that microglia mediate synaptic pruning in the central nervous system, where the cluster of differentiation 47-signal regulatory protein α (CD47-SIRPα) axis creates a "don't eat me" signal and elicits an antiphagocytic effect to protect synapses against elimination. To date, the synaptic phagocytosis in microglia has never been investigated in the murine cancer-induced bone pain model. The present experiments sought to explore whether microglia phagocytize synapses in mice with bone cancer pain as well as the possible mechanisms. METHODS: Male C3H/HeN mice were used to induce bone cancer pain. Minocycline and S-ketamine were injected into D14. The number of spontaneous flinches (NSF) and paw withdrawal mechanical thresholds (PWMT) were measured on D0, D4, D7, D10, D14, D21, and D28. Hematoxylin and eosin staining presented bone lesions. Western blotting examined the Gephyrin, CD47, and SIRPα expression. Flow cytometry evaluated the proportion of SIRPα + cells in the spine. Immunofluorescence and 3-dimensional reconstruction showed the Gephyrin puncta inside microglial lysosomes. RESULTS: Mice embedded with tumor cells induced persistent spontaneous pain and mechanical hyperalgesia. Hematoxylin and eosin staining revealed bone destruction and tumor infiltration in marrow cavities. Microglia underwent a responsive and proliferative burst (t = -16.831, P < .001). Western blotting manifested lowered Gephyrin expression in the tumor group (D4, D7, D10, D14, D21, and D28: P < .001). Immunofluorescence and 3-dimensional reconstruction showed larger volumes of Gephyrin puncta inside microglial lysosomes (t = -23.273, P < .001; t = -27.997, P < .001). Treatment with minocycline or S-ketamine exhibited pain relief and antiphagocytic effects (t = -6.191, P < .001, t = -7.083, P < .001; t = -20.767, P < .001, t = -17.080, P < .001; t = 11.789, P < .001, t = 16.777, P < .001; t = 8.868, P < .001, t = 21.319, P < .001). Last but not least, the levels of CD47 and SIRPα proteins were downregulated (D10: P = .004, D14, D21, and D28: P < .001; D10, D14, D21, and D28: P < .001). Flow cytometry and immunofluorescence substantiated reduced microglial SIRPα (t = 11.311, P < .001; t = 12.189, P < .001). CONCLUSIONS: Microglia-mediated GABAergic synapse pruning in the spinal cord dorsal horn in bone cancer pain mice, which might be associated with the declined CD47-SIRPα signal. Our research uncovered an innovative mechanism that highlighted microglia-mediated synaptic phagocytosis in a murine cancer-induced bone pain model.


Assuntos
Neoplasias Ósseas , Antígeno CD47 , Dor do Câncer , Modelos Animais de Doenças , Camundongos Endogâmicos C3H , Microglia , Fagocitose , Receptores Imunológicos , Animais , Microglia/efeitos dos fármacos , Microglia/metabolismo , Masculino , Fagocitose/efeitos dos fármacos , Dor do Câncer/metabolismo , Dor do Câncer/etiologia , Dor do Câncer/fisiopatologia , Neoplasias Ósseas/complicações , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Camundongos , Receptores Imunológicos/metabolismo , Antígeno CD47/metabolismo , Corno Dorsal da Medula Espinal/metabolismo , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/patologia , Sinapses/metabolismo , Minociclina/farmacologia , Comportamento Animal/efeitos dos fármacos
7.
Echocardiography ; 41(3): e15801, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38519840

RESUMO

OBJECTIVE: This study aimed to analyze myocardial work in patients with atrial fibrillation (AF) using a noninvasive pressure strain loop (PSL) technique to provide a basis for the quantitative assessment of left ventricular (LV) systolic function. METHODS: LV myocardial work of 107 AF patients (56 with paroxysmal atrial fibrillation and 51 with persistent atrial fibrillation) and 55 healthy individuals were assessed by the noninvasive PSL and then compared. RESULTS: Global longitudinal strain (GLS) in absolute values, global work index (GWI), global constructive work (GCW), and global work efficiency (GWE) were significantly lower in the AF group than control group, whereas peak strain dispersion (PSD) and global wasted work (GWW) were significantly higher (P < .05). Further subdivision according to the AF type revealed that, compared with the controls, GLS in absolute values and GWE decreased significantly; PSD and GWW increased significantly in the paroxysmal AF group (P < .05). Nevertheless, GWI and GCW were not significantly different between paroxysmal AF and control groups (P > .05). Compared to paroxysmal AF, persistent AF induced a further decrease in absolute GLS and GWE and a further increase in GWW (P < .05), but PSD did not increase further (P > .05). Multiple linear regression analysis showed that GWI and GCW were independently associated with systolic blood pressure. GWW was associated with types of AF and left atrial volume index (LAVI). GWE was correlated with age, types of AF, disease duration, and LAVI. Receiver operating characteristic curve analysis showed that the area under the curve predicting myocardial injury was higher for GWE and GWW than for GLS (area under the curve:  .880,  .846, and  .821, respectively). CONCLUSIONS: Non-invasive PSL can quantitatively assess LV systolic function in patients with different kinds of AF and detect early subclinical myocardial injury in patients with paroxysmal AF. GWE and GWW outperform GLS and LV ejection fraction when assessing myocardial injury. Systolic blood pressure, type of AF, LVAI, disease duration, and age may be associated with myocardial injury in patients with AF.


Assuntos
Fibrilação Atrial , Traumatismos Cardíacos , Humanos , Fibrilação Atrial/diagnóstico por imagem , Miocárdio , Função Ventricular Esquerda , Átrios do Coração , Volume Sistólico
8.
Environ Toxicol ; 39(4): 2390-2404, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38164749

RESUMO

Ulcerative colitis (UC) is an idiopathic chronic intestinal inflammation. An increasing body of evidence shows that macrophages play an important role in the pathogenesis of UC. Interferon regulatory factor 4 (IRF4) is crucial for the development of autoimmune diseases via regulating immune cells. This research was designed to explore the function of IRF4 in UC and its association with macrophage polarization. The in vitro model of UC was established by stimulating colonic epithelial cells with tumor necrosis factor α (TNF-α). A mouse model of UC was constructed by injecting C57BL/6 mice with dextran sulfate sodium salt. Flow cytometry was used to assess percentage of CD11b+ CD86+ and CD11b+ CD206+ cells in bone marrow macrophages. Occult blood tests were used to detect hematochezia. Hematoxylin and eosin staining assay was used to assess colon pathological changes. Enzyme-linked immunosorbent assay (ELISA) was used to detect concentrations of inflammatory cytokines. The interaction of IRF4 and B-cell lymphoma 6 (Bcl6) was confirmed using GST pull-down and coimmunoprecipitation assays. Our findings revealed that IRF4 promoted cell apoptosis and stimulated M1 macrophage polarization in vitro. Furthermore, IRF4 aggravated symptoms of the mouse model of UC and aggravated M1 macrophage polarization in vivo. IRF4 negatively regulated Bcl6 expression. Downregulation of Bcl6 promoted apoptosis and M1 macrophage polarization in the presence of IRF4 in vitro and in vivo. Moreover, Bcl6 positively mediated the Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway. In conclusion, IRF4 aggravated UC progression through promoting M1 macrophage polarization via Bcl6/JAK2/STAT3 pathway. These findings suggested that IRF4 might be a good target to competitively inhibit or to treat with UC.


Assuntos
Colite Ulcerativa , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Modelos Animais de Doenças , Inflamação/metabolismo , Fatores Reguladores de Interferon/metabolismo , Macrófagos , Camundongos Endogâmicos C57BL , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Fator de Transcrição STAT3/metabolismo
9.
Mol Cancer ; 22(1): 85, 2023 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-37210576

RESUMO

BACKGROUND: Enhancer of zeste homolog 2 (EZH2), the key catalytic subunit of polycomb repressive complex 2 (PRC2), is overexpressed and plays an oncogenic role in various cancers through catalysis-dependent or catalysis-independent pathways. However, the related mechanisms contributing to ovarian cancer (OC) are not well understood. METHODS: The levels of EZH2 and H3K27me3 were evaluated in 105 OC patients by immunohistochemistry (IHC) staining, and these patients were stratified based on these levels. Canonical and noncanonical binding sites of EZH2 were defined by chromatin immunoprecipitation sequencing (ChIP-Seq). The EZH2 solo targets were obtained by integrative analysis of ChIP-Seq and RNA sequencing data. In vitro and in vivo experiments were performed to determine the role of EZH2 in OC growth. RESULTS: We showed that a subgroup of OC patients with high EZH2 expression but low H3K27me3 exhibited the worst prognosis, with limited therapeutic options. We demonstrated that induction of EZH2 degradation but not catalytic inhibition profoundly blocked OC cell proliferation and tumorigenicity in vitro and in vivo. Integrative analysis of genome-wide chromatin and transcriptome profiles revealed extensive EZH2 occupancy not only at genomic loci marked by H3K27me3 but also at promoters independent of PRC2, indicating a noncanonical role of EZH2 in OC. Mechanistically, EZH2 transcriptionally upregulated IDH2 to potentiate metabolic rewiring by enhancing tricarboxylic acid cycle (TCA cycle) activity, which contributed to the growth of OC. CONCLUSIONS: These data reveal a novel oncogenic role of EZH2 in OC and identify potential therapeutic strategies for OC by targeting the noncatalytic activity of EZH2.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste , Neoplasias Ovarianas , Humanos , Feminino , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Histonas/metabolismo , Complexo Repressor Polycomb 2/genética , Complexo Repressor Polycomb 2/metabolismo , Neoplasias Ovarianas/patologia , Metilação , Linhagem Celular Tumoral
10.
Mol Carcinog ; 62(2): 277-287, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36342355

RESUMO

Esophageal squamous cell carcinoma (ESCC) is highly resistant to chemoradiation therapy. We aimed to examine whether Nutlin-3, a molecule that suppresses murine double min 2 (MDM2)-mediated p53 and Retinoblastoma (RB) protein degradation leading to downregulation of DNA methyltransferases (DNMTs), can be a novel therapeutic agent for ESCC. We used wild-type and chemoradiation-resistant ESCC cell lines in this study. The expression of DNMTs, p53 and RB, and methylation level of tumor suppressor genes (TSG) were analyzed upon Nutlin-3 treatment. The antitumor efficacy of Nutlin-3 was investigated in ESCC cell lines and xenograft tumor model. TSG protein expression was checked in the excised tumor tissue. Nutlin-3 induced upregulation of p53 and RB and downregulation of DNMTs proteins in the chemoradiation-resistant and aggressive ESCC cells. The methylation level of TSGs was decreased by Nutlin-3. Nutlin-3 inhibits clonogenic growth of ESCC cells and exerts a synergistic cytotoxic-effect when combined with chemotherapeutic agent cisplatin. Moreover, xenograft tumor growth in SCID mice was suppressed by Nutlin-3. The protein expression level of DNMTs was downregulated, and that of TSGs was upregulated by Nutlin-3 treatment in the excised tumor tissue. In conclusion, Nutlin-3 is a potential therapeutic agent that can potentiate the treatment efficacy of chemoradiation-resistant ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Animais , Humanos , Camundongos , Apoptose , Linhagem Celular Tumoral , DNA/farmacologia , Inibidores Enzimáticos/farmacologia , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/radioterapia , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/radioterapia , Metiltransferases/metabolismo , Metiltransferases/farmacologia , Camundongos SCID , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteína do Retinoblastoma/metabolismo , Proteína Supressora de Tumor p53/genética
11.
Neurochem Res ; 48(1): 305-314, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36104611

RESUMO

Sleep deprivation, a common perioperative period health problem, causes ocular discomfort and affects postsurgical pain. However, the mechanism of sleep deprivation-induced increased pain sensitivity is elusive. This study aims to explore the role of ROS in sleep deprivation (SD)-induced hyperalgesia and the underlying mechanism. A 48-h continuous SD was performed prior to the hind paw incision pain modeling in mice. We measured ROS levels, microglial activation, DNA damage and protein levels of iNOS, NLRP3, p-P65 and P65 in mouse spinal dorsal cord. The involvement of ROS in SD-induced prolongation of postsurgical pain was further confirmed by intrathecal injection of ROS inhibitor, phenyl-N-tert-butylnitrone (PBN). Pretreatment of 48-h SD in mice significantly prolonged postsurgical pain recovery, manifesting as lowered paw withdrawal mechanical threshold and paw withdrawal thermal latency. It caused ROS increase and upregulation of iNOS on both Day 1 and 7 in mouse spinal dorsal cord. In addition, upregulation of NLRP3 and p-P65, microglial activation and DNA damage were observed in mice pretreated with 48-h SD prior to the incision. Notably, intrathecal injection of PBN significantly reversed the harmful effects of SD on postsurgical pain recovery, hyperalgesia, microglial activation and DNA damage via the NF-κB signaling pathway. Collectively, ROS increase is responsible for SD-induced hyperalgesia through activating microglial, triggering DNA damage and enhancing NLRP3 inflammasome activity in the spinal dorsal cord.


Assuntos
Hiperalgesia , Inflamassomos , Ratos , Camundongos , Animais , Hiperalgesia/metabolismo , Inflamassomos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Microglia/metabolismo , Privação do Sono/complicações , Privação do Sono/tratamento farmacológico , Privação do Sono/metabolismo , Ratos Sprague-Dawley , Medula Espinal/metabolismo , Dor Pós-Operatória/metabolismo
12.
J Phycol ; 59(1): 70-86, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36333277

RESUMO

Spiny-surfaced species of Prorocentrum form harmful algal blooms, and its taxonomic identity is obscure due to the size and shape variability. Molecular phylogenies reveal two major clades: one for P. cordatum with sequences mainly retrieved as P. minimum, and the other for P. shikokuense with sequences also retrieved as P. dentatum and P. donghaiense. Several closely related clades still need to be characterized. Here, we provide nuclear SSU and LSU rRNA genes, and nuclear ITS region (ITS1-5.8S gene-ITS2) sequences of the strain CCMP3122 isolated from Florida (initially named P. donghaiense) and strains Prorocentrum sp. RCC6871-2 from the Ross Sea, Antarctica. We describe Prorocentrum thermophilum sp. nov. based on the strain CCMP3122, a species also distributed in the open waters of the Gulf of Mexico, New Zealand, and the Arabian Gulf; and Prorocentrum criophilum sp. nov. based on the strain RCC6872, which is distributed in the Antarctic Ocean and Arctic Sea. Prorocentrum thermophilum is roundish (~14 µm long, ~12 µm wide), with an inconspicuous anterior spine-like prolongation under light microscopy, valves with tiny, short knobs (5-7 per µm2 ), and several (<7) large trichocyst pores (~0.3 µm) in the right valve, as well as smaller pores (~0.15 µm). Prorocentrum criophilum is round in valve view (~11 µm long, 10 µm wide) and asymmetrically roundish in lateral view, the periflagellar area was not discernible under light microscopy, valves with very tiny, short knobs (6-10 per µm2 ), and at least 12 large pores in the right valve. Other potentially undescribed species of spiny-surfaced Prorocentrum are discussed.


Assuntos
Dinoflagellida , Filogenia , Proliferação Nociva de Algas , Florida , Organelas
13.
Int J Health Geogr ; 22(1): 16, 2023 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-37516882

RESUMO

BACKGROUND: The availability of physical activity (PA) facilities in neighborhoods is hypothesized to influence cardiovascular disease (CVD), but evidence from individual-level long-term cohort studies is limited. We aimed to assess the association between neighborhood exposure to PA facilities and CVD incidence. METHODS: A total of 4658 participants from the Chinese Multi-provincial Cohort Study without CVD at baseline (2007-2008) were followed for the incidence of CVD, coronary heart disease (CHD), and stroke. Availability of PA facilities was defined as both the presence and the density of PA facilities within a 500-m buffer zone around the participants' residential addresses. Time-dependent Cox regression models were performed to estimate the associations between the availability of PA facilities and risks of incident CVD, CHD, and stroke. RESULTS: During a median follow-up of 12.1 years, there were 518 CVD events, 188 CHD events, and 355 stroke events. Analyses with the presence indicator revealed significantly lower risks of CVD (hazard ratio [HR] 0.80, 95% confidence interval ([CI] 0.65-0.99) and stroke (HR 0.76, 95% CI 0.60-0.97) in participants with PA facilities in the 500-m buffer zone compared with participants with no nearby facilities in fully adjusted models. In analyses with the density indicator, exposure to 2 and ≥ 3 PA facilities was associated with 35% (HR 0.65, 95% CI 0.47-0.91) and 28% (HR 0.72, 95% CI 0.56-0.92) lower risks of CVD and 40% (HR 0.60, 95% CI 0.40-0.90) and 38% (HR 0.62, 95% CI 0.46-0.84) lower risks of stroke compared with those without any PA facilities in 500-m buffer, respectively. Effect modifications between presence of PA facilities and a history of hypertension for incident stroke (P = 0.049), and a history of diabetes for incident CVD (P = 0.013) and stroke (P = 0.009) were noted. CONCLUSIONS: Residing in neighborhoods with better availability of PA facilities was associated with a lower risk of incident CVD. Urban planning intervention policies that increase the availability of PA facilities could contribute to CVD prevention.


Assuntos
Doenças Cardiovasculares , Exercício Físico , Características da Vizinhança , Acidente Vascular Cerebral , Humanos , Povo Asiático , Doenças Cardiovasculares/epidemiologia , Estudos de Coortes , Acidente Vascular Cerebral/epidemiologia , Academias de Ginástica
14.
J Digit Imaging ; 36(3): 1001-1015, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36813977

RESUMO

The assessment of bone age is important for evaluating child development, optimizing the treatment for endocrine diseases, etc. And the well-known Tanner-Whitehouse (TW) clinical method improves the quantitative description of skeletal development based on setting up a series of distinguishable stages for each bone individually. However, the assessment is affected by rater variability, which makes the assessment result not reliable enough in clinical practice. The main goal of this work is to achieve a reliable and accurate skeletal maturity determination by proposing an automated bone age assessment method called PEARLS, which is based on the TW3-RUS system (analysis of the radius, ulna, phalanges, and metacarpal bones). The proposed method comprises the point estimation of anchor (PEA) module for accurately localizing specific bones, the ranking learning (RL) module for producing a continuous stage representation of each bone by encoding the ordinal relationship between stage labels into the learning process, and the scoring (S) module for outputting the bone age directly based on two standard transform curves. The development of each module in PEARLS is based on different datasets. Finally, corresponding results are presented to evaluate the system performance in localizing specific bones, determining the skeletal maturity stage, and assessing the bone age. The mean average precision of point estimation is 86.29%, the average stage determination precision is 97.33% overall bones, and the average bone age assessment accuracy is 96.8% within 1 year for the female and male cohorts.


Assuntos
Determinação da Idade pelo Esqueleto , Rádio (Anatomia) , Criança , Humanos , Masculino , Feminino , Determinação da Idade pelo Esqueleto/métodos , Rádio (Anatomia)/diagnóstico por imagem , Ulna/diagnóstico por imagem , Valores de Referência
15.
Mol Pain ; 18: 17448069221099360, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35451875

RESUMO

Prolongation of postsurgical pain caused by pre-operative stress is a clinically significant problem, although the mechanisms are not fully understood. Stress can promote the pro-inflammatory activation of microglia, and the transcription factor CCAAT/enhancer-binding protein (C/EBP) ß regulates pro-inflammatory gene expression in microglia. Therefore, we speculated that C/EBPß in spinal microglia may have critical roles in the development of chronic postsurgical pain. Accordingly, in this study, we used a single prolonged stress (SPS) procedure and plantar incisions to evaluate the roles of C/EBPß in postsurgical pain. Our experiments showed that SPS exposure prolonged mechanical allodynia, increased the expression of C/EBPß and pro-inflammatory cytokines, and potentiated the activation of spinal microglia. Subsequently, microinjection of C/EBPß siRNA attenuated the duration of SPS-prolonged postoperative mechanical allodynia and inhibited microglial activation in the spinal cord. Conversely, mimicking this increase in C/EBPß promoted microglial activation via pretreatment with a pre-injection of AAV5-C/EBPß, leading to prolongation of postsurgical pain. Overall, these results suggested that spinal microglia may play key roles in prolongation of postsurgical pain induced by pre-operative stress and that C/EBPß may be a potential target for disease treatment.


Assuntos
Hiperalgesia , Microglia , Regulação da Expressão Gênica , Humanos , Hiperalgesia/metabolismo , Microglia/metabolismo , Dor Pós-Operatória/metabolismo , Medula Espinal
16.
Neurochem Res ; 47(11): 3454-3463, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36002639

RESUMO

Anxiety and depression induced by cancer-related pain disturb quality of life and willingness to survive. As a component of the limbic system, the basolateral amygdala (BLA) is critical for processing negative emotions. The reactive microglial engulfment of synapses may promote depression during adolescence. However, whether microglia phagocytose synapses to mediate cancer pain-induced depression remains unclear. The present study established a bone cancer-pain model to investigate the association between dendritic spine synapses and depressive-like behavior and explore the phagocytic function of microglia in the BLA. We found that tumor-bearing mice experienced postoperative pain-related depression, and their BLAs exhibited reactive microglia, as well as phagocytic synapses. The microglial inhibitor minocycline effectively mitigated depressive behavior, synaptic damage, and the phagocytic function of microglia. Our study implicates microglia-mediated synaptic loss in the BLA may act as the pathological basis of depressive-like behavior in bone cancer pain model.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Neoplasias Ósseas , Dor do Câncer , Animais , Neoplasias Ósseas/complicações , Camundongos , Microglia , Minociclina/farmacologia , Qualidade de Vida
17.
Int J Mol Sci ; 23(12)2022 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35743265

RESUMO

The immune cell inflammation response is closely related to the occurrence of disease, and much evidence has shown that circular RNAs (circRNAs) play vital roles in the occurrence of disease. However, the biological function and regulatory mechanisms of circRNAs in the immune cell inflammation response remain poorly understood. In this study, we constructed an inflammatory model using lipopolysaccharide (LPS)-stimulated chicken macrophage lines (also known as HD11) to verify the function and mechanism of the novel circDCLRE1C (ID: gga_circ_0001674), which was significantly upregulated in spleen tissues infected by coccidia and the macrophage cells exposed to LPS. The results showed that circDCLRE1C aggravated LPS-induced inflammation and apoptosis in HD11 cells. Systemically, circDCLRE1C acted as a sponge for miR-214b-3p binding sites thereby regulating the expression of STAT3. The overexpression of miR-214b-3p rescued the pro-inflammatory effect of circDCLRE1C in HD11 cells stimulated with LPS, and rescued the high expression of STAT3. In conclusion, our study showed that circDCLRE1C could aggravate LPS-induced inflammation and apoptosis through competitive adsorption of miR-214b-3p, thereby increasing the expression of STAT3.


Assuntos
Lipopolissacarídeos , MicroRNAs , Apoptose/genética , Humanos , Inflamação/induzido quimicamente , Inflamação/genética , Lipopolissacarídeos/toxicidade , Macrófagos , MicroRNAs/genética , RNA Circular/genética , Fator de Transcrição STAT3/genética , Transdução de Sinais
18.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 44(5): 885-890, 2022 Oct.
Artigo em Zh | MEDLINE | ID: mdl-36325787

RESUMO

Sleep deprivation,the process and state of partial or complete lack of normal sleep caused by various factors,is prevalent at present.Seriously impairing the physical and mental health,sleep deprivation has become a public health problem that cannot be ignored.Studies have demonstrated that blood-brain barrier impairment is the key pathophysiological process of a variety of neurological diseases.Although clinical and basic studies have suggested that sleep deprivation can induce blood-brain barrier impairment,the underlying mechanisms remain to be elucidated.This review summarizes the advances in the mechanisms of blood-brain barrier impairment induced by sleep deprivation.


Assuntos
Barreira Hematoencefálica , Privação do Sono , Humanos , Privação do Sono/complicações , Encéfalo
19.
Angew Chem Int Ed Engl ; 61(21): e202200855, 2022 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35243737

RESUMO

Here we report stepwise solution-synthesis of linear nonalternant nanoribbons (NNRs), featuring pentagonal rings peri-fused onto the repeating perylene unit. The X-ray single-crystal structures demonstrated their π-backbones as a twisted ribbon, with the longest crystalline length of the nanoribbon up to 3.9 nm. NNRs exhibited an orange to deep-red photoluminescence even under the room light, with absolute ΦF up to 82 %, most likely due to ring-strain induced molecular stiffness. Benefiting from the enlarged size and the antiaromatic character of pentagons, all of NNRs possessed ambipolar redox properties, especially for longer nanoribbons showing multiple reversible reductions and oxidations. In addition, experimental and theoretical results indicated a ground state open-shell singlet diradicaloid for the dication of longer NNRs. Our studies reveal the intriguing nonalternant structures and physical properties of this type of nanoribbons, involving the striking effects of the multiple annulated pentagons, and also provide fundamental insights into their electronic structures.

20.
Mol Reprod Dev ; 88(1): 15-33, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33140506

RESUMO

In mammals, sperm need to mature in the epididymis to gain fertilization competency. However, the molecular mechanism underlying buffalo sperm maturation remains elusive. Exploring sperm physiology at the posttranslational modification (PTM) level could help to develop our understanding of these mechanisms. Protein phosphorylation and ubiquitination are major PTMs in the regulation of many biological processes. In the present study, to our knowledge, we report the first phosphoproteome and ubiquitylome of sperm collected from the caput, corpus, and cauda segments of the epididymis using liquid chromatography-mass spectrometry combined with affinity purification. In total, 647 phosphorylation sites in 294 proteins and 1063 ubiquitination sites in 446 proteins were characterized. Some of these proteins were associated with cellular developmental processes and energy metabolic pathways. Interestingly, 84 proteins were both phosphorylated and ubiquitinated, simultaneously. Some of these proteins were involved in, for example, spermatogenesis, reproduction, and spermatid development. Taken together, these data provide a theoretical basis for further functional analysis of phosphorylation and ubiquitination in epididymal sperm of buffalo and other mammals, and serve as an important resource for exploring the physiological mechanism underlying sperm maturation.


Assuntos
Búfalos/metabolismo , Epididimo/metabolismo , Fosfoproteínas/metabolismo , Proteoma/metabolismo , Reprodução/fisiologia , Espermatozoides/metabolismo , Proteínas Ubiquitinadas/metabolismo , Animais , Células Cultivadas , Masculino , Fosforilação/fisiologia , Proteômica/métodos , Maturação do Esperma/fisiologia , Ubiquitinação/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA