Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Phys Chem Chem Phys ; 26(25): 17423-17442, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38869477

RESUMO

In recent years, doping engineering, which is widely studied in theoretical and experimental research, is an effective means to regulate the crystal structure and physical properties of two-dimensional materials and expand their application potential. Based on different types of element dopings, different 2D materials show different properties and applications. In this paper, the characteristics and performance of rich layered 2D materials under different types of doped elements are comprehensively reviewed. Firstly, 2D materials are classified according to their crystal structures. Secondly, conventional experimental methods of charge doping and heterogeneous atom substitution doping are summarized. Finally, on the basis of various theoretical research results, the properties of several typical 2D material representatives under charge doping and different kinds of atom substitution doping as well as the inspiration and expansion of doping systems for the development of related fields are discussed. Through this review, researchers can fully understand and grasp the regulation rules of different doping engineering on the properties of layered 2D materials with different crystal structures. It provides theoretical guidance for further improving and optimizing the physical properties of 2D materials, improving and enriching the relevant experimental research and device application development.

2.
J Chem Phys ; 159(16)2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37873962

RESUMO

Constructing metal-semiconductor interfaces by loading metal atoms onto two-dimensional material to build atomically dispersed single-atom catalysts (SACs) has emerged as a new frontier for improving atom utilization and designing multifunctional electrocatalysts. Nowadays, studies on black phosphorus nanosheets in electrocatalysis have received much attention and the successful preparation of metal nanoparticle/black phosphorus (BP) hybrid electrocatalysts indicates BP nanosheets can serve as a potential support platform for SACs. Herein, by using large-scale ab initio calculations, we explored a large composition space of SACs with transition metal atoms supported on BP monolayer (M-BP) and built a comprehensive picture of activity trend, stability, and electronic origin towards oxygen reduction and evolution reaction (ORR and OER) and hydrogen evolution reaction (HER). The results show that the catalytic activity can be widely tuned by reasonable regulation of metal atoms. Ni-, Pd-, and Pt-BP could effectively balance the binding strength of the target intermediates, thus achieving efficient bifunctional activity for OER and ORR. Favorable bifunctional catalytic performance for OER and HER can be realized on Rh-BP. Especially, Pt-BP exhibits promising trifunctional activity towards OER, ORR, and HER. Multiple-level corrections among overpotential, Gibbs free energy, orbital population, and d-band center reveal that the trend and origin of catalytic activity are intrinsically determined by the d-band center of metal sites. The thermodynamic and dynamic stability simulations demonstrate that the active metal centers are firmly anchored on BP substrate with intact M-P bonds. These findings provide a theoretical basis for the rational design of BP-based SACs toward promising multifunctional activity.

3.
Molecules ; 28(2)2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36677585

RESUMO

With the continuous exploration of low-dimensional nanomaterials, two dimensional metal oxides (2DMOs) has been received great interest. However, their further development is limited by the high cost in the preparation process and the unstable states caused by the polarization of surface chemical bonds. Recently, obtaining mental oxides via liquid metals have been considered a surprising method for obtaining 2DMOs. Therefore, how to scientifically choose different preparation methods to obtain 2DMOs applying in different application scenarios is an ongoing process worth discussing. This review will provide some new opportunities for the rational design of 2DMOs based on liquid metals. Firstly, the surface oxidation process and in situ electrical replacement reaction process of liquid metals are introduced in detail, which provides theoretical basis for realizing functional 2DMOs. Secondly, by simple sticking method, gas injection method and ultrasonic method, 2DMOs can be obtained from liquid metal, the characteristics of each method are introduced in detail. Then, this review provides some prospective new ideas for 2DMOs in other energy-related applications such as photodegradation, CO2 reduction and battery applications. Finally, the present challenges and future development prospects of 2DMOs applied in liquid metals are presented.

4.
Artigo em Inglês | MEDLINE | ID: mdl-35559719

RESUMO

A novel obligate anaerobic organism, designated DONG20-135T, was isolated from human faeces collected in Beijing, PR China. Cells were Gram-stain-negative, rod-shaped, non-motile and non-spore-forming. Growth occurred at 25‒45 °C (optimum, 30‒35 °C), a pH range of 6-9 (optimum, pH 8) and in the presence of 0‒3.5 % (w/v) NaCl (optimum, 0.5‒1.5 %). The major fatty acids were C16 : 0, C18 : 1 ω9c and C10 : 0, the polar lipid profile consisted of diphosphatidylglycerol, phosphatidylglycerol, four glycolipids, six aminolipids, three aminophospholipids and four unidentified lipids. No respiratory quinones were detected. The cell-wall peptidoglycan of the strain was A1γ type, containing meso-diaminopimelic acid. The 16S rRNA gene sequences shared a lower identity (<92.7 % similarity) with the described species. The phylogenetic tree based on 16S rRNA gene sequences and the protein-concatamer tree showed that strain DONG20-135T formed a distinct lineage within the family Erysipelotrichaceae. The genomic DNA G + C content was 42.2 mol%. Based on the results of phenotypic, chemotaxonomic and genomic analyses, strain DONG20-135T represents a novel genus of the family Erysipelotrichaceae, for which the name Copranaerobaculum intestinale gen. nov., sp. nov. is proposed (=KCTC 15868T=CGMCC 1.17357T).


Assuntos
Ácidos Graxos , Fosfolipídeos , Anaerobiose , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Fezes , Humanos , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
5.
Nanotechnology ; 33(48)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35896084

RESUMO

Herein, the TiS2nanosheets (NSs) are prepared from the TiS2bulk by the liquid-phase exfoliation to fabricate photoelectrochemical-type (PEC) photodetector. SEM images and Raman spectra show the successful acquisition of the TiS2NSs. The as-prepared TiS2photodetector shows self-powered ability with an applicable photoresponsivity that is about 0.37µA W-1under zero bias potential and 80 mW cm-2visible light, and the response time of rise is 0.67 s and the decay time is 2.81 s. In this case, the photodetector is made of ITO-coated polyethylene terephthalate (PET), so it can maintain stable performance under the bending conditions. These results display that the as-prepared photodetector has excellent photoelectric properties, which facilitates the development of TiS2NSs in optoelectronic devices.

6.
J Am Chem Soc ; 143(44): 18714-18720, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34709827

RESUMO

Spatiotemporally resolved dissection of subcellular proteome is crucial to our understanding of cellular functions in health and disease. We herein report a bioorthogonal and photocatalytic decaging-enabled proximity labeling strategy (CAT-Prox) for spatiotemporally resolved mitochondrial proteome profiling in living cells. Our systematic survey of the photocatalysts has led to the identification of Ir(ppy)2bpy as a bioorthogonal and mitochondria-targeting catalyst that allowed photocontrolled, rapid rescue of azidobenzyl-caged quinone methide as a highly reactive Michael acceptor for proximity-based protein labeling in mitochondria of live cells. Upon careful validation through in vitro labeling, mitochondria-targeting specificity, in situ catalytic activity as well as protein tagging, we applied CAT-Prox for mitochondria proteome profiling in living Hela cells as well as hard-to-transfect macrophage RAW264.7 cells with approximately 70% mitochondria specificity observed from up to 300 proteins enriched. Finally, CAT-Prox was further applied to the dynamic dissection of mitochondria proteome of macrophage cells upon lipopolysaccharide stimulation. By integrating photocatalytic decaging chemistry with proximity-based protein labeling, CAT-Prox offers a general, catalytic, and nongenetic alternative to the enzyme-based proximity labeling strategies for diverse live cell settings.


Assuntos
Mitocôndrias/metabolismo , Processos Fotoquímicos , Catálise , Células HeLa , Humanos , Proteômica
7.
Nanotechnology ; 32(48)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34293728

RESUMO

Herein, FePS3/reduced graphene oxide heterostructure has been prepared via a typical hydrothermal process, and flexible photodetectors based on hybrids have been subsequently fabricated. The photoresponse measurement results demonstrate that the photodetector exhibits obvious photoelectric conversion behavior without applied potential, indicating that the device possesses the capability to be self-powered. In addition, the photocurrent density of the as-fabricated photodetectors reaches up to 125 nA cm-2under 90 mW cm-2illumination intensity without an external power source, which is 5.86 times higher than single FePS3-based devices. Furthermore, the maximum attenuation in photocurrent density of the as-fabricated flexible photodetectors measured at -0.3 V after different bending cycles and bending angles is 29.8% and 17.7%, respectively. These results demonstrate that the as-fabricated photodetectors have excellent flexibility and provide a simple and effective strategy for the construction of flexible photodetectors.

8.
Phys Chem Chem Phys ; 23(1): 506-513, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33325469

RESUMO

We performed density functional theory calculations to investigate the electronic and magnetic properties of h-BN/MoS2 heterostructures intercalated with 3d transition-metal (TM) atoms, including V, Cr, Mn, Fe, Co, and Ni atoms. It was found that metal and magnetic semiconductor characteristics are induced in the h-BN/MoS2 heterostructures after intercalating TMs. In addition, the results demonstrate that h-BN sheets could promote charge transfer between the TMs and the heterogeneous structure. Specifically, the h-BN/MoS2 heterostructure transforms from an indirect semiconductor to a metal after intercalating V or Cr atoms in the interlayers. For Mn, Fe, and Co atoms, the bandgaps of the intercalated heterojunction systems become smaller when the spin polarization is 100% at the highest occupied molecular orbital level. However, the system intercalated with Ni atoms exhibits no spin polarization and non-magnetic character. Strong covalent-bonding interactions emerged between the intercalated TMs and the nearest S atom of the h-BN/MoS2 heterostructure. In addition, the magnetic moments of the TM atoms show a decreasing trend for all the interstitial intercalated heterostructures compared with their free-standing states. These results reveal that h-BN/MoS2 heterostructures with intercalated TMs are promising candidates for application in multifarious spintronic devices.

9.
Phys Chem Chem Phys ; 23(40): 23024-23031, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34612268

RESUMO

Photodetectors based on intrinsic graphene can operate over a broad wavelength range with ultrafast response, but their responsivity is much lower than commercial silicon photodiodes. The combination of graphene with two-dimensional (2D) semiconductors may enhance the light absorption, but there is still a cutoff wavelength originating from the bandgap of semiconductors. Here, we report a highly responsive broadband photodetector based on the heterostructure of graphene and transition metal carbides (TMCs, more specifically Mo2C). The graphene-Mo2C heterostructure enhanced light absorption over a broad wavelength range from ultraviolet to infrared. In addition, there is very small resistance for photoexcited carriers in both graphene and Mo2C. Consequently, photodetectors based on the graphene-Mo2C heterostructure deliver a very high responsivity from visible to infrared telecommunication wavelengths.

10.
Infect Immun ; 89(1)2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33106294

RESUMO

External environmental factors can cause an imbalance in intestinal flora. For people living in the extremes of a plateau climate, lack of oxygen is a primary health challenge that leads to a series of reactions. We wondered how intestinal microorganisms might change in a simulated plateau environment and what changes might occur in the host organism and intestinal microorganisms in the absence of hypoxia-related factors. In this study, mice carrying a knockout of hypoxia-inducible factor 1ß (Hif-1ß) in myeloid cells and wild-type mice were raised in a composite hypoxic chamber to simulate a plateau environment at 5,000 m of elevation for 14 days. The mice carrying the myeloid Hif-1ß deletion displayed aggravated hypoxic phenotypes in comparison to and significantly greater weight loss and significantly higher cardiac index values than the wild-type group. The levels of some cytokines increased in the hypoxic environment. Analysis of 16S rRNA sequencing results showed that hypoxia had a significant effect on the gut microbiota in both wild-type and Hif-1ß-deficient mice, especially on the first day. The levels of members of the Bacteroidaceae family increased continuously from day 1 to day 14 in Hif-1ß deletion mice, and they represented an obviously different group of bacteria at day 14 compared with the wild-type mice. Butyrate-producing bacteria, such as Butyricicoccus, were found in wild-type mice only after 14 days in the hypoxic environment. In conclusion, hypoxia caused heart enlargement, greater weight loss, and obvious microbial imbalance in myeloid Hif-1ß-deficient mice. This study revealed genetic and microecological pathways for research on mechanisms of hypoxia.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto/deficiência , Microbioma Gastrointestinal , Deleção de Genes , Hipóxia/genética , Células Mieloides/metabolismo , Animais , Biodiversidade , Feminino , Hipóxia/metabolismo , Camundongos , Camundongos Knockout , Células Mieloides/imunologia , Fenótipo
11.
Nanotechnology ; 31(11): 115201, 2020 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-31747652

RESUMO

Bismuth telluride (Bi2Te3) is a typical topological insulator, which possesses a narrow band gap and exhibits fascinating performance in the photodetector field. In this work, we fabricated a Bi2Te3/graphene heterostructure via a facile one-pot hydrothermal method. The as-prepared composites were used as the electrode materials for the photoelectrochemical (PEC)-type photodetector. From the results of PEC tests, we obviously found that the Bi2Te3/graphene heterostructure offers a remarkable improvement in photoresponse compared to that of sole Bi2Te3, and effectively demonstrates effective photocarrier generation and transfer at the interface between the graphene and Bi2Te3, which can enhance the properties of the photoresponse. Moreover, owing to the self-powered ability of the PEC-type photodetector, it can work under the bias potential of 0 V and exhibits a prominent photoresponse which can reach 2.2 mA W-1. Also, the photocurrent density of the prepared Bi2Te3/graphene heterostructure-based photodetector can almost linearly rise with the increased irradiation power density. Even if the light intensity was reduced to 40 mW cm-2, the photocurrent density could also reach 67 µA cm-2, which ensures the photodetection ability of the as-prepared Bi2Te3/graphene under low light intensity. The excellent performance of a Bi2Te3/graphene heterostructure for a PEC-type photodetector holds great promise in the field of photoelectric detection.

12.
BMC Microbiol ; 19(1): 308, 2019 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-31888576

RESUMO

BACKGROUND: Culturomics can ascertain traces of microorganisms to be cultivated using different strategies and identified by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry or 16S rDNA sequencing. However, to cater to all requirements of microorganisms and isolate as many species as possible, multiple culture conditions must be used, imposing a heavy workload. In addition, the fast-growing bacteria (e.g., Escherichia) surpass the slow-growing bacteria in culture by occupying space and using up nutrients. Besides, some bacteria (e.g., Pseudomonas) suppress others by secreting antibacterial metabolites, making it difficult to isolate bacteria with lower competence. Applying inhibitors to restrain fast-growing bacteria is one method to cultivate more bacterial species from human feces. RESULTS: We applied CHIR-090, an LpxC enzyme inhibitor that has antibacterial activity against most Gram-negative bacteria, to culturomics of human fresh feces. The antibacterial activity of CHIR-090 was first assessed on five Gram-negative species of bacteria (Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Proteus vulgaris, and Bacteroides vulgatus), all of which are commonly isolated from the human gut. Then, we assessed suitable concentrations of the inhibitor. Finally, CHIR-090 was applied in blood culture bottles for bacterial cultivation. In total, 102 species from five samples were identified. Of these, we found one new species, two species not reported previously in the human gut, and 11 species not previously isolated from humans. CONCLUSIONS: CHIR-090 can suppress E. coli, P. aeruginosa, K. pneumoniae, Pro. vulgaris, but not B. vulgatus. Compared with the non-inhibitor group, CHIR-090 increased bacteria isolation by 23.50%, including four species not reported in humans and one new species. Application of LpxC enzyme inhibitor in culturomics increased the number of species isolated from the human gut.


Assuntos
Amidoidrolases/antagonistas & inibidores , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Técnicas Bacteriológicas/métodos , Inibidores Enzimáticos/farmacologia , Microbioma Gastrointestinal , Adulto , Bactérias/isolamento & purificação , Hemocultura/métodos , DNA Bacteriano/genética , Fezes/microbiologia , Voluntários Saudáveis , Humanos , Ácidos Hidroxâmicos/farmacologia , Análise de Sequência de DNA , Treonina/análogos & derivados , Treonina/farmacologia
13.
Nanotechnology ; 29(23): 235201, 2018 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-29543188

RESUMO

Two dimensional Bi nanosheets have been employed to fabricate electrodes for broadband photo-detection. A series of characterization techniques including scanning electron microscopy and high-resolution transmission electron microscopy have verified that Bi nanosheets with intact lamellar structure have been obtained after facile liquid phase exfoliation. In the meanwhile, UV-vis and Raman spectra are also carried out and the inherent optical and physical properties of Bi nanosheets are confirmed. Inherited from the topological characteristics of Bi bulk counterpart, the resultant Bi nanosheet-based photo-detector exhibits preferable photo-response activity as well as environmental robustness. We then evaluate the photo-electrochemical (PEC) performance of the photodetector in 1 M NaOH and 0.5 M Na2SO4 electrolytes, and demonstrated that the as-prepared Bi nanosheets may possess a great potential as PEC-type photo-detector. Additional PEC measurements show that the current density of Bi nanosheets can reach up to 830 nA cm-2, while an enhanced responsivity (1.8 µA W-1) had been achieved. We anticipate that this contribution can provide feasibility towards the construction of high-performance elemental Bi nanosheets-based optoelectronic devices in the future.

14.
Phys Chem Chem Phys ; 20(25): 17387-17392, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29905350

RESUMO

We have studied the stable geometries, band structures and magnetic properties of transition-metal (V, Cr, Mn, Fe, Co and Ni) atoms absorbed on MoS2/h-BN heterostructure systems by first-principles calculations. By comparing the adsorption energies, we find that the adsorbed transition metal (TM) atoms prefer to stay on the top of Mo atoms. The results of the band structure without spin-orbit coupling (SOC) interaction indicate that the Cr-absorbed systems behave in a similar manner to metals, and the Co-absorbed system exhibits a half-metallic state. We also deduce that the V-, Mn-, Fe-absorbed systems are semiconductors with 100% spin polarization at the HOMO level. The Ni-absorbed system is a nonmagnetic semiconductor. In contrast, the Co-absorbed system exhibits metallic state, and the bandgap of V-absorbed system decreases slightly according to the SOC calculations. In addition, the magnetic moments of all the six TM atoms absorbed on the MoS2/h-BN heterostructure systems decrease when compared with those of their free-standing states.

15.
Phytother Res ; 32(7): 1373-1381, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29532526

RESUMO

Tumour metastasis is the major cause of breast cancer mortality. Myricetin, a natural polyphenol, is found in teas, wines, and berries. The pharmacodynamic action and molecular mechanism of myricetin on breast cancer metastasis remain unknown. Here, we investigated the effect of myricetin on MDA-Mb-231Br cell viability, migration, invasion, and 4T1 mouse lung metastasis mouse models. MMP-2/9 protein expression and ST6GALNAC5 expression were analysed using western blot assays and quantitative real-time polymerase chain reaction, respectively. Cell migration and invasion were detected by wound-healing and Boyden transwell assays. The antimetastatic effect in vivo was evaluated by lung metastasis model. Myricetin significantly decreased the activities of MMP-2/9 and mRNA levels of ST6GALNAC5. In addition, the migration, invasion, and adhesion were effectively inhibited in a concentration-dependent manner. On the other hand, mice treated with myricetin exhibited smaller tumour nodules compared with the vehicle mice, with only 17.78 ± 15.41% after treatment with 50 mg/kg myricetin. In conclusion, myricetin could significantly block invasion of MDA-Mb-231Br cells through suppressing the protein expression of MMP-2/9 and the expression of ST6GALNAC5, as well as lung metastasis in a mouse model, which suggests that myricetin should be developed as a potential therapeutic candidate for breast cancer.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Flavonoides/uso terapêutico , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Animais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Regulação para Baixo , Feminino , Flavonoides/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Metástase Neoplásica
16.
Phys Chem Chem Phys ; 17(32): 20795-804, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26214743

RESUMO

A novel binder-free electrode material of NiMoO4@CoMoO4 hierarchical nanospheres anchored on nickel foam with excellent electrochemical performance has been synthesized via a facile hydrothermal strategy. Microstructures and morphologies of samples are characterized by X-ray diffraction (XRD), Raman, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS). Besides, the effect of Ni/Co molar ratios of raw materials on electrochemical behaviors is also investigated by cyclic voltammetry, galvanostatic charge-discharge measurements, cycling tests and electrochemical impedance spectroscopy methods. Remarkably, the resulting NiMoO4@CoMoO4 hierarchical nanospheres with a Ni/Co molar ratio of 4 : 1 exhibit greatly enhanced capacitive properties relative to other components and display a high specific capacitance of 1601.6 F g(-1) at the current density of 2 A g(-1), as well as better cycling stability and rate capability. Moreover, a symmetric supercapacitor is constructed using NiMoO4@CoMoO4 nanospheres as the positive and negative electrodes with one piece of cellulose paper as the separator, which shows good electrochemical performance. Such enchanced capacitive properties are mostly attributed to the synergistic effect of nickel and cobalt molybdates directly deposited on the conductive substrate and their novel hierarchical structure, which can provide pathways for fast diffusion and transportation of ions and electrons and a large number of active sites. The results imply that the NiMoO4@CoMoO4 hierarchical nanospheres could be promising candidates for electrochemical energy storage.

17.
Invest Ophthalmol Vis Sci ; 65(2): 31, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38381411

RESUMO

Purpose: N4-acetylcytidine (ac4C) is a post-transcriptional RNA modification catalyzed by N-acetyltransferase 10 (NAT10), a critical factor known to influence mRNA stability. However, the role of ac4C in visual development remains unexplored. Methods: Analysis of public datasets and immunohistochemical staining were conducted to assess the expression pattern of nat10 in zebrafish. We used CRISPR/Cas9 and RNAi technologies to knockout (KO) and knockdown (KD) nat10, the zebrafish ortholog of human NAT10, and evaluated its effects on early development. To assess the impact of nat10 knockdown on visual function, we performed comprehensive histological evaluations and behavioral analyses. Transcriptome profiling and real-time (RT)-PCR were utilized to detect alterations in gene expression resulting from the nat10 knockdown. Dot-blot and RNA immunoprecipitation (RIP)-PCR analyses were conducted to verify changes in ac4C levels in both total RNA and opsin mRNA specifically. Additionally, we used the actinomycin D assay to examine the stability of opsin mRNA following the nat10 KD. Results: Our study found that the zebrafish NAT10 protein shares similar structural properties with its human counterpart. We observed that the nat10 gene was prominently expressed in the visual system during early zebrafish development. A deficiency of nat10 in zebrafish embryos resulted in increased mortality and developmental abnormalities. Behavioral and histological assessments indicated significant vision impairment in nat10 KD zebrafish. Transcriptomic analysis and RT-PCR identified substantial downregulation of retinal transcripts related to phototransduction, light response, photoreceptors, and visual perception in the nat10 KD group. Dot-blot and RIP-PCR analyses confirmed a pronounced reduction in ac4C levels in both total RNA and specifically in opsin messenger RNA (mRNA). Additionally, by evaluating mRNA decay in zebrafish treated with actinomycin D, we observed a significant decrease in the stability of opsin mRNA in the nat10 KD group. Conclusions: The ac4C-mediated mRNA modification plays an essential role in maintaining visual development and retinal function. The loss of NAT10-mediated ac4C modification results in significant disruptions to these processes, underlining the importance of this RNA modification in ocular development.


Assuntos
Acetiltransferases , Peixe-Zebra , Humanos , Animais , Peixe-Zebra/genética , Dactinomicina , Opsinas , Opsinas de Bastonetes , RNA/genética , RNA Mensageiro/genética
18.
J Phys Condens Matter ; 35(36)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37276870

RESUMO

The structural, electronic and optical properties of MoSSe, PbS (111) and MoSSe/PbS (111) have been studied by the first-principles calculations, and the effect of VSon electronic and optical properties of MoSSe/PbS (111). When PbS (111) is stacked on MoSSe, an internal electric field and ohmic contact are formed at interlayer, and exhibited metal property. Compared with MoSSe and PbS (111) monolayer, MoSSe/PbS (111) heterostructure has higher absorption coefficients. Further analysis shows that this can be attributed to the orbital hybridization between the heterostructure layers. When VSis introduced, spin splitting occurs, making the spin-down channel below the Fermi level and inducing half-metallicity. What's more, Vs MoSSe/PbS (111) still performances better optical absorption coefficient. Based on these findings, the heterogeneous structures and defects not only affect the electronic properties, but also can be used as an effective method to regulate the electrical and optical properties, providing useful theoretical guidance for further experimental studies.

19.
ACS Appl Mater Interfaces ; 15(42): 49545-49553, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37830979

RESUMO

Here, a photoelectrochemical (PEC) photodetector with good flexibility and high photoresponsivity was successfully fabricated in a vertical structure, where the MXene (Ti2CTx) nanosheet and carbon black electrode were separated by adenosine triphosphate/nicotinamide adenine dinucleotide phosphate (ATP/NADPH)-incorporated solid-state electrolyte. The photocurrent and photoresponsivity can reach 1.84 µA/cm2 and 8.89 µA/W, respectively, under a light intensity of 90 mW/cm2 at a bias potential of 0.6 V, which are approximately 2.3 times those of Ti2CTx nanosheets. The addition of ATP and NADPH to the electrolyte also leads to a large decrease of the rise time from 0.76 to 0.26 s. Furthermore, the photodetector can continue to function and maintain stability under 45° bending and after 500 cycles of bending, indicating a robust device structure and great flexibility. The performance enhancement of the PEC photodetector can be attributed to the synergistic effect of electrolyte additives on Ti2CTx nanosheets, where ATP and NADPH greatly enhance the circulation and utilization of photogenerated carriers. This work suggests that the incorporation of chloroplast-inspired carrier circulation with two-dimensional nanosheets could achieve efficient light-current conversion, providing a new strategy to improve the performance of PEC-type photodetectors.

20.
Front Surg ; 10: 1103804, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36816008

RESUMO

Purpose: This study aimed to compare the surgical efficacy of enlarged laminectomy with lateral mass screw fixation (EL-LMSF) and anterior cervical decompression and fusion (ACDF) for multilevel cervical myelopathy and radiculopathy (CMR) related to kyphosis. Methods: 75 patients were retrospectively reviewed and divided into ACDF and EL-LMSF group. Clinical results including operative time, blood loss, and postoperative complications were compared. The JOA scoring system was used to evaluate spinal cord function and the VAS score evaluate nerve root pain severity. Cervical alignment a C2-C7 was measured with Cobb method and compared to confirm the reconstruction effect. Results: Data on 75 patients (M/F: 41:34; EL-LMSF/ACDF:42/33) with the mean age of 57.5 years (range 43-72 year old) were reviewed retrospectively. Discectomy and/or sub-toal corpectomy in ACDF group was performed with a mean of 3.24 levels (range, 3-4). Enlarged laminectomy in EL-LMSF group was performed with a mean of 3.89 enlarged levels (range, 3-5). The procedure of ACDF group showed a shorter operation time (103 ± 22 min vs. 125 ± 37 min, P = 0.000) and less blood loss (78 ± 15 ml vs. 226 ± 31 ml, P = 0.000) compared than that of the EL-LMSF group. Patients treated with EL-LMSF indicated lower VAS for upper extremity (1.3 ± 1.7 vs. 3.3 ± 1.3, P = 0.003) and better curvature corrected (10.7 ± 4.2° vs. 8.5 ± 3.5°, P = 0.013). The difference were of statistical significance. No statistical difference was found after surgery in the JOA score (14.1 ± 1.7 vs. 13.5 ± 2.1, P = 0.222). During the follow-up period, 15.2% of patients in the ACDF group had complications including 2 cases with transient dysphagia, 1 case with C5 palsy, 1 case with axial pain, and 1 case with screw pullout 3 month after surgery. However, only 9.5% of cases in the EL-LMSF group experienced complications, including 3 cases of axial pain and 1 case of epidural hematoma. Conclusion: The EL-LMSF procedure requires a longer operation time and more blood loss because of the incision of the stenosed foramen. However, the procedure has obvious advantages in relieving nerve root symptoms and correcting cervical curvature with fewer postoperative complications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA