Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; : 114950, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36463995

RESUMO

Source apportionment is critical but remains largely unknown for heavy metals in the soil surrounding black shale mining areas. Herein, the distribution, potential hazards, and sources of heavy metals in the soil around a black shale post-mining site were investigated. The content of Cadmium (Cd) in topsoil samples (0.77-50.29 mg/kg, N = 84) all exceeded the Chinese agricultural soil standard (0.3 mg/kg). The majority of Cd in the soil existed in the mobile fraction posing a high potential risk to the local ecosystem. and Zn and V in soils existed in the residual form. The percentages of HQing > 1 and 0.6-1 for Vanadium (V) in soil were 8.3% and 31.0%, respectively, and the percentages of HQing > 0.5 for Cd in soil were 3.7% showed that V and Cd were the main factors that increased the potential non-cancer risk. Five potential sources were identified using the geostatistical and positive matrix factorization (PMF) model, among which Cd was mainly derived from the short-term weathering process of black shale (81.06%), most Zinc (Zn) was from the long-term weathering of black shale (67.35%), whereas V was contributed by many factors including long-term weathering of black shale (42.99%), traffic emissions (31.12%) and agricultural activities (21.05%). This study reveals the potential risk and identifies the sources of heavy metals, which is helpful to manage the contaminated soil in black shale mining areas.

2.
Molecules ; 25(8)2020 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-32316089

RESUMO

Active silicate materials have good adsorption and passivation effects on heavy metal pollutants. The experimental conditions for the preparation of active silicate heavy metal adsorbent (ASHMA) and the adsorption of Cu(II) by ASHMA were investigated. The optimum preparation conditions of ASHMA were as follows: 200 mesh quartz sand as the raw material, NaOH as an activating agent, NaOH/quartz sand = 0.45 (mass fraction), and calcination at 600 °C for 60 min. Under these conditions, the active silicon content of the adsorbent was 22.38% and the utilization efficiency of NaOH reached 89.11%. The adsorption mechanism of Cu(II) on the ASHMA was analyzed by the Langmuir and Freundlich isotherm models, which provided fits of 0.99 and 0.98, respectively. The separation coefficient (RL) and adsorption constant (n) showed that the adsorbent favored the adsorption of Cu(II), and the maximum adsorption capacity (Qmax) estimated by the Langmuir isotherm was higher than that of 300 mg/L. Furthermore, adsorption by ASHMA was a relatively rapid process, and adsorption equilibrium could be achieved in 1 min. The adsorbents were characterized by FT-IR and Raman spectroscopy. The results showed that the activating agent destroyed the crystal structure of the quartz sand under calcination, and formed Si-O-Na and Si-OH groups to realize activation. The experimental results revealed that the adsorption process involved the removal of Cu(II) by the formation of Si-O-Cu bonds on the surface of the adsorbent. The above results indicated that the adsorbent prepared from quartz sand had a good removal effect on Cu(II).


Assuntos
Cobre/análise , Silicatos/química , Poluentes Químicos da Água/análise , Adsorção , Cristalografia , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Purificação da Água/métodos
3.
Chemosphere ; 310: 136916, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36272620

RESUMO

High health risks of vanadium (V) released by the mining of vanadium titanomagnetite (VTM) have been widely recognized, but little is known about the risks and microbial community responses of V pollution as a consequence of the stone coal mining (SCM), another important resource for V mining. In this study, the topsoils and the profile soils were collected from the agricultural soils around a typical SCM in Hunan Province, China, with the investigation of ecological, health risks and microbial community structures. The results showed that ∼97.6% of sampling sites had levels of total V exceeding the Chinese National standard (i.e., 130 mg/kg), and up to 41.1% of V speciation in the topsoils was pentavalent vanadium (V(V)). Meanwhile, the proportions of HQ > 1 and 0.6-1 in the topsoils were ∼8.3% and ∼31.0% respectively, indicating that V might pose a non-carcinogenic risk to children. In addition, the microbial community varied between the topsoils and the profile soils. Both sulfur-oxidizing bacteria (e.g. Thiobacillus, MND1, Ignavibacterium) and sulfate-reducing bacteria (e.g. Desulfatiglans, GOUTB8, GOUTA6) might have been involved in V(V) reductive detoxification. This study helps better understand the pollution and associated risks of V in the soils of SCM and provides a potential strategy for bioremediation of the V-contaminated environment.


Assuntos
Minas de Carvão , Microbiota , Poluentes do Solo , Criança , Humanos , Solo/química , Vanádio/análise , Poluentes do Solo/análise , Mineração , Biodegradação Ambiental , Medição de Risco , Bactérias , China , Monitoramento Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA