Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Inherit Metab Dis ; 44(2): 415-425, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32929747

RESUMO

TANGO2 disease is a severe inherited disorder associating multiple symptoms such as metabolic crises, encephalopathy, cardiac arrhythmias, and hypothyroidism. The mechanism of action of TANGO2 is currently unknown. Here, we describe a cohort of 20 French patients bearing mutations in the TANGO2 gene. We found that the main clinical presentation was the association of neurodevelopmental delay (n = 17), acute metabolic crises (n = 17) and hypothyroidism (n = 12), with a large intrafamilial clinical variability. Metabolic crises included rhabdomyolysis (15/17), neurological symptoms (14/17), and cardiac features (12/17; long QT (n = 10), Brugada pattern (n = 2), cardiac arrhythmia (n = 6)) that required intensive care. We show previously uncharacterized triggers of metabolic crises in TANGO2 patients, such as some anesthetics and possibly l-carnitine. Unexpectedly, plasma acylcarnitines, plasma FGF-21, muscle histology, and mitochondrial spectrometry were mostly normal. Moreover, in patients' primary myoblasts, palmitate and glutamine oxidation rates, and the mitochondrial network were also normal. Finally, we found variable mitochondrial respiration and defective clearance of oxidized DNA upon cycles of starvation and refeeding. We conclude that TANGO2 disease is a life-threatening disease that needs specific cardiac management and anesthesia protocol. Mechanistically, TANGO2 disease is unlikely to originate from a primary mitochondrial defect. Rather, we suggest that mitochondrial defects are secondary to strong extrinsic triggers in TANGO2 deficient patients.


Assuntos
Arritmias Cardíacas/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/deficiência , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Transtornos do Neurodesenvolvimento/genética , Rabdomiólise/genética , Adolescente , Criança , Pré-Escolar , Exoma , Feminino , França , Humanos , Hipotireoidismo/genética , Lactente , Masculino , Mitocôndrias/genética , Mutação , Linhagem , Fenótipo , Estudos Retrospectivos , Adulto Jovem
4.
Biomed Pharmacother ; 163: 114813, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37150031

RESUMO

BACKGROUND: Lipin-1 deficiency is a life-threatening disease that causes severe rhabdomyolysis (RM) and chronic symptoms associated with oxidative stress. In the absence of treatment, Hydroxychloroquine sulfate (HCQ) was administered to patients off label use on a compassionate basis in order to improve their physical conditions. METHODS: Eleven patients with LPIN1 mutations were treated with HCQ. Clinical and biological efficacy and tolerance were assessed, including pain and quality of life, physical capacities, cardiopulmonary parameters, creatine kinase levels and plasma proinflammatory cytokines. To explore a dose-dependent effect of HCQ, primary myoblasts from 4 patients were incubated with various HCQ concentrations in growth medium (GM) or during starvation (EBSS medium) to investigate autophagy and oxidative stress. FINDINGS: Under HCQ treatment, patient physical capacities improved. Abnormal cardiac function and peripheral muscle adaptation to exercise were normalized. However, two patients who had the highest mean blood HCQ concentrations experienced RM. We hypothesized that HCQ exerts deleterious effects at high concentrations by blocking autophagy, and beneficial effects on oxidative stress at low concentrations. We confirmed in primary myoblasts from 4 patients that high in vitro HCQ concentration (10 µM) but not low concentration (1 µM and 0.1 µM) induced autophagy blockage by modifying endolysosomal pH. Low HCQ concentration (1 µM) prevented reactive oxygen species (ROS) and oxidized DNA accumulation in myoblasts during starvation. INTERPRETATION: HCQ improves the condition of patients with lipin-1 deficiency, but at low concentrations. In vitro, 1 µM HCQ decreases oxidative stress in myoblasts whereas higher concentrations have a deleterious effect by blocking autophagy.


Assuntos
Hidroxicloroquina , Qualidade de Vida , Humanos , Hidroxicloroquina/farmacologia , Hidroxicloroquina/uso terapêutico , Citocinas , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Fosfatidato Fosfatase/genética
5.
Neurol Genet ; 8(1): e648, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35079622

RESUMO

BACKGROUND AND OBJECTIVES: To determine common clinical and biological traits in 2 individuals with variants in ISCU and FDX2, displaying severe and recurrent rhabdomyolyses and lactic acidosis. METHODS: We performed a clinical characterization of 2 distinct individuals with biallelic ISCU or FDX2 variants from 2 separate families and a biological characterization with muscle and cells from those patients. RESULTS: The individual with FDX2 variants was clinically more affected than the individual with ISCU variants. Affected FDX2 individual fibroblasts and myoblasts showed reduced oxygen consumption rates and mitochondrial complex I and PDHc activities, associated with high levels of blood FGF21. ISCU individual fibroblasts showed no oxidative phosphorylation deficiency and moderate increase of blood FGF21 levels relative to controls. The severity of the FDX2 individual was not due to dysfunctional autophagy. Iron was excessively accumulated in ISCU-deficient skeletal muscle, which was accompanied by a downregulation of IRP1 and mitoferrin2 genes and an upregulation of frataxin (FXN) gene expression. This excessive iron accumulation was absent from FDX2 affected muscle and could not be correlated with variable gene expression in muscle cells. DISCUSSION: We conclude that FDX2 and ISCU variants result in a similar muscle phenotype, that differ in severity and skeletal muscle iron accumulation. ISCU and FDX2 are not involved in mitochondrial iron influx contrary to frataxin.

6.
Cells ; 9(8)2020 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-32722643

RESUMO

In Duchenne muscular dystrophy (DMD) patients, absence of dystrophin causes muscle wasting by impacting both the myofiber integrity and the properties of muscle stem cells (MuSCs). Investigation of DMD encompasses the use of MuSCs issued from human skeletal muscle. However, DMD-derived MuSC usage is restricted by the limited number of divisions that human MuSCs can undertake in vitro before losing their myogenic characteristics and by the scarcity of human material available from DMD muscle. To overcome these limitations, immortalization of MuSCs appears as a strategy. Here, we used CDK4/hTERT expression in primary MuSCs and we derived MuSC clones from a series of clinically and genetically characterized patients, including eight DMD patients with various mutations, four congenital muscular dystrophies and three age-matched control muscles. Immortalized cultures were sorted into single cells and expanded as clones into homogeneous populations. Myogenic characteristics and differentiation potential were tested for each clone. Finally, we screened various promoters to identify the preferred gene regulatory unit that should be used to ensure stable expression in the human MuSC clones. The 38 clonal immortalized myogenic cell clones provide a large collection of controls and DMD clones with various genetic defects and are available to the academic community.


Assuntos
Distrofia Muscular de Duchenne/fisiopatologia , Células Satélites de Músculo Esquelético/metabolismo , Animais , Estudos de Casos e Controles , Diferenciação Celular , Criança , Pré-Escolar , Modelos Animais de Doenças , Feminino , Humanos , Lactente , Masculino
7.
Oncotarget ; 7(24): 35753-35767, 2016 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-26840085

RESUMO

Approximately 30-50% of individuals with Neurofibromatosis type 1 develop benign peripheral nerve sheath tumors, called plexiform neurofibromas (PNFs). PNFs can undergo malignant transformation to highly metastatic malignant peripheral nerve sheath tumors (MPNSTs) in 5-10% of NF1 patients, with poor prognosis. No effective systemic therapy is currently available for unresectable tumors. In tumors, the NF1 gene deficiency leads to Ras hyperactivation causing the subsequent activation of the AKT/mTOR and Raf/MEK/ERK pathways and inducing multiple cellular responses including cell proliferation. In this study, three NF1-null MPNST-derived cell lines (90-8, 88-14 and 96-2), STS26T sporadic MPNST cell line and PNF-derived primary Schwann cells were used to test responses to AZD8055, an ATP-competitive "active-site" mTOR inhibitor. In contrast to rapamycin treatment which only partially affected mTORC1 signaling, AZD8055 induced a strong inhibition of mTORC1 and mTORC2 signaling in MPNST-derived cell lines and PNF-derived Schwann cells. AZD8055 induced full blockade of mTORC1 leading to an efficient decrease of global protein synthesis. A higher cytotoxic effect was observed with AZD8055 compared to rapamycin in the NF1-null MPNST-derived cell lines with IC50 ranging from 70 to 140 nM and antiproliferative effect was confirmed in PNF-derived Schwann cells. Cell migration was impaired by AZD8055 treatment and cell cycle analysis showed a G0/G1 arrest. Combined effects of AZD8055 and PD0325901 MEK inhibitor as well as BRD4 (BromoDomain-containing protein 4) inhibitors showed a synergistic antiproliferative effect. These data suggest that NF1-associated peripheral nerve sheath tumors are an ideal target for AZD8055 as a single molecule or in combined therapies.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 2 de Rapamicina/antagonistas & inibidores , Morfolinas/farmacologia , Neoplasias de Bainha Neural/tratamento farmacológico , Neurofibroma Plexiforme/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Antineoplásicos/uso terapêutico , Benzamidas/farmacologia , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Difenilamina/análogos & derivados , Difenilamina/farmacologia , Sinergismo Farmacológico , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/antagonistas & inibidores , MAP Quinase Quinase 2/metabolismo , Morfolinas/uso terapêutico , Neoplasias de Bainha Neural/etiologia , Neoplasias de Bainha Neural/genética , Neurofibroma Plexiforme/etiologia , Neurofibroma Plexiforme/genética , Neurofibromatose 1/complicações , Neurofibromatose 1/genética , Neurofibromina 1/genética , Proteínas Nucleares/metabolismo , Cultura Primária de Células , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células de Schwann , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/metabolismo , Proteínas ras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA