Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 309
Filtrar
2.
Nat Immunol ; 19(4): 327-341, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29507356

RESUMO

Trauma can affect any individual at any location and at any time over a lifespan. The disruption of macrobarriers and microbarriers induces instant activation of innate immunity. The subsequent complex response, designed to limit further damage and induce healing, also represents a major driver of complications and fatal outcome after injury. This Review aims to provide basic concepts about the posttraumatic response and is focused on the interactive events of innate immunity at frequent sites of injury: the endothelium at large, and sites within the lungs, inside and outside the brain and at the gut barrier.


Assuntos
Imunidade Inata/imunologia , Ferimentos e Lesões/imunologia , Animais , Humanos
3.
Immunol Rev ; 313(1): 91-103, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36258635

RESUMO

A number of clinical treatment modalities involve contact between blood and biomaterials: these include extracorporeal circuits such as hemodialysis, cardiopulmonary bypass, plasmapheresis, and intravascular treatments. Common side effects arising from these treatments are caused by activation of the cascade systems of the blood. Many of these side effects are mediated via the complement system, including thromboinflammatory reactions and rejection of implants. Depending on the composition of the materials, complement activation is triggered via all the activation pathways but is by far mostly driven by the alternative pathway amplification loop. On biomaterial surfaces the alternative pathway amplification is totally unregulated and leads under optimal conditions to deposition of complement fragments, mostly C3b, on the surface leading to a total masking of the underlying surface. In this review, we discuss the mechanism of the complement activation, clinical consequences of the activation, and potential strategies for therapeutic regulation of the activation, using hemodialysis as demonstrator.


Assuntos
Ativação do Complemento , Proteínas do Sistema Complemento , Humanos , Via Alternativa do Complemento
6.
Semin Immunol ; 60: 101640, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35853795

RESUMO

Patients in the intensive care unit (ICU) often straddle the divide between life and death. Understanding the complex underlying pathomechanisms relevant to such situations may help intensivists select broadly acting treatment options that can improve the outcome for these patients. As one of the most important defense mechanisms of the innate immune system, the complement system plays a crucial role in a diverse spectrum of diseases that can necessitate ICU admission. Among others, myocardial infarction, acute lung injury/acute respiratory distress syndrome (ARDS), organ failure, and sepsis are characterized by an inadequate complement response, which can potentially be addressed via promising intervention options. Often, ICU monitoring and existing treatment options rely on massive intervention strategies to maintain the function of vital organs, and these approaches can further contribute to an unbalanced complement response. Artificial surfaces of extracorporeal organ support devices, transfusion of blood products, and the application of anticoagulants can all trigger or amplify undesired complement activation. It is, therefore, worth pursuing the evaluation of complement inhibition strategies in the setting of ICU treatment. Recently, clinical studies in COVID-19-related ARDS have shown promising effects of central inhibition at the level of C3 and paved the way for prospective investigation of this approach. In this review, we highlight the fundamental and often neglected role of complement in the ICU, with a special focus on targeted complement inhibition. We will also consider complement substitution therapies to temporarily counteract a disease/treatment-related complement consumption.


Assuntos
COVID-19 , Síndrome do Desconforto Respiratório , Humanos , Complemento C3 , Estudos Prospectivos , COVID-19/terapia , Unidades de Terapia Intensiva , Síndrome do Desconforto Respiratório/terapia , Ativação do Complemento
7.
J Biol Chem ; 300(4): 105784, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38401844

RESUMO

The introduction of a therapeutic anti-C5 antibody into clinical practice in 2007 inspired a surge into the development of complement-targeted therapies. This has led to the recent approval of a C3 inhibitory peptide, an antibody directed against C1s and a full pipeline of several complement inhibitors in preclinical and clinical development. However, no inhibitor is available that efficiently inhibits all three complement initiation pathways and targets host cell surface markers as well as complement opsonins. To overcome this, we engineered a novel fusion protein combining selected domains of the three natural complement regulatory proteins decay accelerating factor, factor H and complement receptor 1. Such a triple fusion complement inhibitor (TriFu) was recombinantly expressed and purified alongside multiple variants and its building blocks. We analyzed these proteins for ligand binding affinity and decay acceleration activity by surface plasmon resonance. Additionally, we tested complement inhibition in several in vitro/ex vivo assays using standard classical and alternative pathway restricted hemolysis assays next to hemolysis assays with paroxysmal nocturnal hemoglobinuria erythrocytes. A novel in vitro model of the alternative pathway disease C3 glomerulopathy was established to evaluate the potential of the inhibitors to stop C3 deposition on endothelial cells. Next to the novel engineered triple fusion variants which inactivate complement convertases in an enzyme-like fashion, stoichiometric complement inhibitors targeting C3, C5, factor B, and factor D were tested as comparators. The triple fusion approach yielded a potent complement inhibitor that efficiently inhibits all three complement initiation pathways while targeting to surface markers.


Assuntos
Fator H do Complemento , Receptores de Complemento 3b , Proteínas Recombinantes de Fusão , Humanos , Fator H do Complemento/metabolismo , Fator H do Complemento/genética , Fator H do Complemento/química , Fator H do Complemento/imunologia , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/farmacologia , Ativação do Complemento/efeitos dos fármacos , Antígenos CD55/genética , Antígenos CD55/metabolismo , Hemólise/efeitos dos fármacos , Via Alternativa do Complemento/efeitos dos fármacos , Inativadores do Complemento/farmacologia , Eritrócitos/metabolismo
8.
Eur J Immunol ; : e2350848, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38794857

RESUMO

Acute injuries trigger an intense activation of the body's defense mechanisms aiming to limit damage and initiate healing. Among the crucial components of the intravascular immune system, the complement system plays a significant role in traumatic injuries, albeit often negatively. It has been suggested that excessive activation of the complement system, transitioning from a localized and timed response to a systemic one, can lead to a loss of its host-protective characteristics. Complement activation products have been associated with the severity of injuries, which sometimes serve as predictors for the onset of organ dysfunctions. Animal studies utilizing complement-targeting agents have provided the basis for considering complement in the management of traumatic injuries in humans. However, numerous studies suggest that the spatial and temporal aspects of complement inhibition are crucial for its efficacy. Understanding the underlying mechanism of the injury is essential to determine where, when, and whether complement inhibition is warranted. Despite the detrimental effects of uncontrolled complement activation, its regulated activation may contribute to essential aspects of healing, such as waste removal and regeneration. This review focuses on the beneficial roles of complement activation in trauma, which are often overlooked or given less consideration but are of immense importance.

9.
Osteoarthritis Cartilage ; 32(5): 514-525, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38242312

RESUMO

OBJECTIVE: The complement cascade as major fluid phase innate immune system is activated during progression of osteoarthritis (OA). Generated anaphylatoxins and the corresponding receptors C3aR and C5aR1 are associated with the calcification of blood vessels and involved in osteogenic differentiation. This study aims on elucidating whether complement activation products contribute to cartilage calcification of OA cartilage. METHOD: Human articular chondrocytes were osteogenically differentiated in vitro in the presence or absence of C3a, C5a, and bone morphogenetic protein (BMP) 2. Furthermore, macroscopically intact (OARSI grade ≤ 1) and highly degenerated human cartilage (OARSI grade ≥ 3) was used for C3aR and C5aR1 histochemistry. Calcification of the cartilage was assessed by Alizarin Red S and von Kossa staining. RESULTS: C3a and C5a amplified matrix mineralization during in vitro osteogenesis, while inhibition of the corresponding receptors impaired calcium deposition. Moreover, C3aR and C5aR1 expression was upregulated during osteogenic differentiation and also in degenerated cartilage. Additionally, anaphylatoxin receptor expression was positively associated with calcification of native cartilage tissue and calcium deposition during osteogenic differentiation. Finally, the pro-hypertrophic growth factor BMP2 induced the expression of C5aR1. CONCLUSIONS: Our findings indicate that anaphylatoxins and their receptors play a decisive role in cartilage calcification processes during OA progression.


Assuntos
Calcinose , Osteoartrite , Humanos , Anafilatoxinas/metabolismo , Osteogênese , Cálcio/metabolismo , Cartilagem/metabolismo , Complemento C5a/metabolismo , Complemento C5a/farmacologia
10.
Eur Arch Psychiatry Clin Neurosci ; 274(5): 1215-1222, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38243017

RESUMO

The role of the complement system in schizophrenia (Sz) is inconclusive due to heterogeneity of the disease and study designs. Here, we assessed the levels of complement activation products and functionality of the classical pathway in acutely ill unmedicated Sz patients at baseline and after 6 weeks of treatment versus matched controls. The study included analyses of the terminal complement complex (sTCC) and C5a in plasma from 96 patients and 96 controls by enzyme-linked immunosorbent assay. Sub-group analysis of serum was conducted for measurement of C4 component and activity of the classical pathway (28 and 24 cases per cohort, respectively). We found no differences in levels of C5a, C4 and classical pathway function in patients versus controls. Plasma sTCC was significantly higher in patients [486 (392-659) ng/mL, n = 96] compared to controls [389 (304-612) ng/mL, n = 96] (p = 0.027, δ = 0.185), but not associated with clinical symptom ratings or treatment. The differences in sTCC between Sz and controls were confirmed using an Aligned Rank Transformation model considering the covariates age and sex (p = 0.040). Additional analysis showed that sTCC was significantly associated with C-reactive protein (CRP; p = 0.006). These findings suggest that sTCC plays a role in Sz as a trait marker of non-specific chronic immune activation, as previously described for CRP. Future longitudinal analyses with more sampling time points from early recognition centres for psychoses may be helpful to better understand the temporal dynamics of innate immune system changes during psychosis development.


Assuntos
Esquizofrenia , Humanos , Esquizofrenia/sangue , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Complemento C4/análise , Complemento C4/metabolismo , Complemento C5a , Adulto Jovem , Proteína C-Reativa/metabolismo , Proteína C-Reativa/análise , Complexo de Ataque à Membrana do Sistema Complemento/metabolismo
11.
Int J Mol Sci ; 25(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38891833

RESUMO

In the last few years, several studies have emphasized the existence of injury-specific EV "barcodes" that could have significant importance for the precise diagnosis of different organ injuries in polytrauma patients. To expand the research potential of the NTF (network trauma research) biobank of polytraumatized patients, the NTF research group decided to further establish a biobank for EVs. However, until now, the protocols for the isolation, characterization, and storage of EVs for biobank purposes have not been conceptualized. Plasma and serum samples from healthy volunteers (n = 10) were used. Three EV isolation methods of high relevance for the work with patients' samples (ultracentrifugation, size exclusion chromatography, and immune magnetic bead-based isolation) were compared. EVs were quantified using nanoparticle tracking analysis, EV proteins, and miRNAs. The effects of different isolation solutions; the long storage of samples (up to 3 years); and the sensibility of EVs to serial freezing-thawing cycles and different storage conditions (RT, 4/-20/-80 °C, dry ice) were evaluated. The SEC isolation method was considered the most suitable for EV biobanking. We did not find any difference in the quantity of EVs between serum and plasma-EVs. The importance of particle-free PBS as an isolation solution was confirmed. Plasma that has been frozen for a long time can also be used as a source of EVs. Serial freezing-thawing cycles were found to affect the mean size of EVs but not their amount. The storage of EV samples for 5 days on dry ice significantly reduced the EV protein concentration.


Assuntos
Bancos de Espécimes Biológicos , Vesículas Extracelulares , Traumatismo Múltiplo , Humanos , Vesículas Extracelulares/metabolismo , Traumatismo Múltiplo/metabolismo , Traumatismo Múltiplo/sangue , Manejo de Espécimes/métodos , Cromatografia em Gel/métodos , Masculino , Ultracentrifugação/métodos , MicroRNAs/sangue , MicroRNAs/genética , Adulto , Feminino
12.
Blood ; 137(4): 443-455, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33507296

RESUMO

Blocking the terminal complement pathway with the C5 inhibitor eculizumab has revolutionized the clinical management of several complement-mediated diseases and has boosted the clinical development of new inhibitors. Data on the C3 inhibitor Compstatin and the C5 inhibitors eculizumab and Coversin reported here demonstrate that C3/C5 convertases function differently from prevailing concepts. Stoichiometric C3 inhibition failed to inhibit C5 activation and lytic activity during strong classical pathway activation, demonstrating a "C3 bypass" activation of C5. We show that, instead of C3b, surface-deposited C4b alone can also recruit and prime C5 for consecutive proteolytic activation. Surface-bound C3b and C4b possess similar affinities for C5. By demonstrating that the fluid phase convertase C3bBb is sufficient to cleave C5 as long as C5 is bound on C3b/C4b-decorated surfaces, we show that surface fixation is necessary only for the C3b/C4b opsonins that prime C5 but not for the catalytic convertase unit C3bBb. Of note, at very high C3b densities, we observed membrane attack complex formation in absence of C5-activating enzymes. This is explained by a conformational activation in which C5 adopts a C5b-like conformation when bound to densely C3b-opsonized surfaces. Stoichiometric C5 inhibitors failed to prevent conformational C5 activation, which explains the clinical phenomenon of residual C5 activity documented for different inhibitors of C5. The new insights into the mechanism of C3/C5 convertases provided here have important implications for the development and therapeutic use of complement inhibitors as well as the interpretation of former clinical and preclinical data.


Assuntos
C3 Convertase da Via Alternativa do Complemento/fisiologia , Complemento C3/antagonistas & inibidores , Complemento C4b/fisiologia , Complemento C5/antagonistas & inibidores , Inativadores do Complemento/farmacologia , Via Clássica do Complemento/efeitos dos fármacos , Modelos Imunológicos , Anticorpos Monoclonais Humanizados/farmacologia , Anticorpos Monoclonais Humanizados/uso terapêutico , Membrana Celular/imunologia , Complemento C5/química , Inativadores do Complemento/uso terapêutico , Complexo de Ataque à Membrana do Sistema Complemento/fisiologia , Resistência a Medicamentos , Células Endoteliais da Veia Umbilical Humana , Humanos , Modelos Moleculares , Peptídeos Cíclicos/farmacologia , Peptídeos Cíclicos/uso terapêutico , Conformação Proteica
13.
Allergy ; 78(7): 1893-1908, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36757006

RESUMO

BACKGROUND: Pulmonary eosinophils comprise at least two distinct populations of resident eosinophils (rEOS) and inflammatory eosinophils (iEOS), the latter recruited in response to pulmonary inflammation. Here, we determined the impact of complement activation on rEOS and iEOS trafficking and function in two models of pulmonary inflammation. METHODS: BALB/c wild-type and C5ar1-/- mice were exposed to different allergens or IL-33. Eosinophil populations in the airways, lung, or mediastinal lymph nodes (mLN) were characterized by FACS or immunohistochemistry. rEOS and iEOS functions were determined in vivo and in vitro. RESULTS: HDM and IL-33 exposure induced a strong accumulation of iEOS but not rEOS in the airways, lungs, and mLNs. rEOS and iEOS expressed C3/C5 and C5aR1, which were significantly higher in iEOS. Initial pulmonary trafficking of iEOS was markedly reduced in C5ar1-/- mice and associated with less IL-5 production from ILC2 cells. Functionally, adoptively transferred pulmonary iEOS from WT but not from C5ar1-/- mice-induced airway hyperresponsiveness (AHR), which was associated with significantly reduced C5ar1-/- iEOS degranulation. Pulmonary iEOS but not rEOS were frequently associated with T cells in lung tissue. After HDM or IL-33 exposure, iEOS but not rEOS were found in mLNs, which were significantly reduced in C5ar1-/- mice. C5ar1-/- iEOS expressed less costimulatory molecules, associated with a decreased potency to drive antigen-specific T cell proliferation and differentiation into memory T cells. CONCLUSIONS: We uncovered novel roles for C5aR1 in iEOS trafficking and activation, which affects key aspects of allergic inflammation such as AHR, ILC2, and T cell activation.


Assuntos
Asma , Eosinófilos , Camundongos , Animais , Eosinófilos/patologia , Interleucina-33/genética , Imunidade Inata , Linfócitos/patologia , Asma/patologia , Pulmão/patologia
14.
Brain Behav Immun ; 108: 148-161, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36427809

RESUMO

Stress-associated somatic and psychiatric disorders are often linked to non-resolving low-grade inflammation, which is promoted at least in part by glucocorticoid (GC) resistance of distinct immune cell subpopulations. While the monocyte/macrophage compartment was in the focus of many clinical and preclinical studies, the role of myeloid-derived suppressor cells (MDSCs) in stress-associated pathologies and GC resistance is less understood. As GC resistance is a clear risk factor for posttraumatic complications in patients on intensive care, the exact interplay of physical and psychosocial traumatization in the development of GC resistance needs to be further clarified. In the current study we employ the chronic subordinate colony housing (CSC) paradigm, a well-characterized mouse model of chronic psychosocial stress, to study the role of myeloid cells, in particular of MDSCs, in innate immune activation and GC resistance following combined psychosocial and physical (e.g., bite wounds) trauma. Our findings support the hypothesis that stress-induced neutrophils, polymorphonuclear (PMN)-MDSCs and monocytes/monocyte-like (MO)-MDSCs get primed and activated locally in the bone marrow as determined by toll-like receptor (TLR)2 upregulation and increased basal and lipopolysaccharide (LPS)-induced in vitro cell viability. These primed and activated myeloid cells emigrate into the peripheral circulation and subsequently, if CSC is accompanied by significant bite wounding, accumulate in the spleen. Here, PMN-MDSCs and monocytes/MO-MDSCs upregulate TLR4 expression, which exclusively in PMN-MDSCs promotes NF-κB hyperactivation upon LPS-stimulation, thereby exceeding the anti-inflammatory capacities of GCs and resulting in GC resistance.


Assuntos
Glucocorticoides , Células Supressoras Mieloides , Estresse Psicológico , Animais , Camundongos , Glucocorticoides/farmacologia , Lipopolissacarídeos , Monócitos , Células Mieloides , Células Supressoras Mieloides/metabolismo
15.
J Immunol ; 207(6): 1641-1651, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34380648

RESUMO

Thrombin activation of C5 connects thrombosis to inflammation. Complement research in whole blood ex vivo necessitates anticoagulation, which potentially interferes with the inflammatory modulation by thrombin. We challenged the concept of thrombin as an activator of native C5 by analyzing complement activation and C5 cleavage in human whole blood anticoagulated with Gly-Pro-Arg-Pro (GPRP), a peptide targeting fibrin polymerization downstream of thrombin, allowing complete endogenous thrombin generation. GPRP dose-dependently inhibited coagulation but allowed for platelet activation in accordance with thrombin generation. Spontaneous and bacterial-induced complement activation by Escherichia coli and Staphylococcus aureus, analyzed at the level of C3 and C5, were similar in blood anticoagulated with GPRP and the thrombin inhibitor lepirudin. In the GPRP model, endogenous thrombin, even at supra-physiologic concentrations, did not cleave native C5, despite efficiently cleaving commercially sourced purified C5 protein, both in buffer and when added to C5-deficient serum. In normal serum, only exogenously added, commercially sourced C5 was cleaved, whereas the native plasma C5 remained intact. Crucially, affinity-purified C5, eluted under mild conditions using an MgCl2 solution, was not cleaved by thrombin. Acidification of plasma to pH ≤ 6.8 by hydrochloric or lactic acid induced a C5 antigenic change, nonreversible by pH neutralization, that permitted cleavage by thrombin. Circular dichroism on purified C5 confirmed the structural change during acidification. Thus, we propose that pH-induced conformational change allows thrombin-mediated cleavage of C5 and that, contrary to previous reports, thrombin does not cleave plasma C5 in its native form, suggesting that thrombin cleavage of C5 may be restricted to certain pathophysiological conditions.


Assuntos
Complemento C5 , Trombina , Coagulação Sanguínea , Ativação do Complemento , Fibrina , Humanos
16.
Cell Mol Life Sci ; 79(4): 207, 2022 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-35338424

RESUMO

Despite the manifold recent efforts to improve patient outcomes, trauma still is a clinical and socioeconomical issue of major relevance especially in younger people. The systemic immune reaction after severe injury is characterized by a strong pro- and anti-inflammatory response. Besides its functions as energy storage depot and organ-protective cushion, adipose tissue regulates vital processes via its secretion products. However, there is little awareness of the important role of adipose tissue in regulating the posttraumatic inflammatory response. In this review, we delineate the local and systemic role of adipose tissue in trauma and outline different aspects of adipose tissue as an immunologically active modifier of inflammation and as an immune target of injured remote organs after severe trauma.


Assuntos
Tecido Adiposo , Inflamação , Humanos
17.
Neurobiol Dis ; 174: 105877, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36162738

RESUMO

BACKGROUND: Systemic and neuroinflammatory processes play key roles in neurodegenerative diseases such as Parkinson's disease (PD). Physical trauma which induces considerable systemic inflammatory responses, represents an evident environmental factor in aging. However, little is known about the impact of physical trauma, on the immuno-pathophysiology of PD. Especially blunt chest trauma which is associated with a high morbidity and mortality rate in the elderly population, can induce a strong pulmonary and systemic inflammatory reaction. Hence, we sought out to combine a well-established thoracic trauma mouse model with a well-established PD mouse model to characterize the influence of physical trauma to neurodegenerative processes in PD. METHODS: To study the influence of peripheral trauma in a PD mouse model we performed a highly standardized blunt thorax trauma in a well-established PD mouse model and determined the subsequent local and systemic response. RESULTS: We could show that blunt chest trauma leads to a systemic inflammatory response which is quantifiable with increased inflammatory markers in bronchoalveolar fluids (BALF) and plasma regardless of the presence of a PD phenotype. A difference of the local inflammatory response in the brain between the PD group and non-PD group could be detected, as well as an increase in the formation of oligomeric pathological alpha-Synuclein (asyn) suggesting an interplay between peripheral thoracic trauma and asyn pathology in PD. CONCLUSION: Taken together this study provides evidence that physical trauma is associated with increased asyn oligomerization in a PD mouse model underlining the relevance of PD pathogenesis under traumatic settings.


Assuntos
Doença de Parkinson , Traumatismos Torácicos , Ferimentos não Penetrantes , Animais , Camundongos , alfa-Sinucleína/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Doença de Parkinson/patologia , Traumatismos Torácicos/patologia , Ferimentos não Penetrantes/patologia
18.
J Neuroinflammation ; 19(1): 279, 2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36403069

RESUMO

BACKGROUND: Traumatic brain injury (TBI) is characterized by massive changes in neuronal excitation, from acute excitotoxicity to chronic hyper- or hypoexcitability. Nuclear calcium signaling pathways are involved in translating changes in synaptic inputs and neuronal activity into discrete transcriptional programs which not only affect neuronal survival and synaptic integrity, but also the crosstalk between neurons and glial cells. Here, we report the effects of blunting neuronal nuclear calcium signals in the context of TBI. METHODS: We used AAV vectors to express the genetically encoded and nuclear-targeted calcium buffer parvalbumin (PV.NLS.mCherry) or the calcium/calmodulin buffer CaMBP4.mCherry in neurons only. Upon TBI, the extent of neuroinflammation, neuronal death and synaptic loss were assessed by immunohistochemistry and targeted transcriptome analysis. Modulation of the overall level of neuronal activity was achieved by PSAM/PSEM chemogenetics targeted to parvalbumin interneurons. The functional impact of neuronal nuclear calcium buffering in TBI was assessed by quantification of spontaneous whisking. RESULTS: Buffering neuronal nuclear calcium unexpectedly resulted in a massive and long-lasting increase in the recruitment of reactive microglia to the injury site, which was characterized by a disease-associated and phagocytic phenotype. This effect was accompanied by a substantial surge in synaptic loss and significantly reduced whisking activity. Transcriptome analysis revealed a complex effect of TBI in the context of neuronal nuclear calcium buffering, with upregulation of complement factors, chemokines and interferon-response genes, as well as the downregulation of synaptic genes and epigenetic regulators compared to control conditions. Notably, nuclear calcium buffering led to a substantial loss in neuronal osteoprotegerin (OPG), whereas stimulation of neuronal firing induced OPG expression. Viral re-expression of OPG resulted in decreased microglial recruitment and synaptic loss. OPG upregulation was also observed in the CSF of human TBI patients, underscoring its translational value. CONCLUSION: Neuronal nuclear calcium signals regulate the degree of microglial recruitment and reactivity upon TBI via, among others, osteoprotegerin signals. Our findings support a model whereby neuronal activity altered after TBI exerts a powerful impact on the neuroinflammatory cascade, which in turn contributes to the overall loss of synapses and functional impairment.


Assuntos
Lesões Encefálicas Traumáticas , Microglia , Humanos , Microglia/metabolismo , Sinalização do Cálcio , Parvalbuminas/metabolismo , Cálcio/metabolismo , Osteoprotegerina/metabolismo , Lesões Encefálicas Traumáticas/metabolismo
19.
FASEB J ; 35(12): e22038, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34748229

RESUMO

Abdominal trauma (AT) is of major global importance, particularly with the increased potential for civil, terroristic, and military trauma. The injury pattern and systemic consequences of blunt abdominal injuries are highly variable and frequently underestimated or even missed, and the pathomechanisms remain still poorly understood. Therefore, we investigated the temporal-spatial organ and immune response after a standardized blast-induced blunt AT. Anesthetized mice were exposed to a single blast wave centered on the epigastrium. At 2, 6, or 24 h after trauma, abdominal organ damage was assessed macroscopically, microscopically, and biochemically. A higher degree of trauma severity, determined by a reduction of the distance between the epigastrium and blast inductor, was reflected by a reduced survival rate. The hemodynamic monitoring during the first 120 min after AT revealed a decline in the mean arterial pressure within the first 80 min, whereas the heart rate remained quite stable. AT induced a systemic damage and inflammatory response, evidenced by elevated HMGB-1 and IL-6 plasma levels. The macroscopic injury pattern of the abdominal organs (while complex) was consistent, with the following frequency: liver > pancreas > spleen > left kidney > intestine > right kidney > others > lungs and was reflected by microscopic liver and pancreas damages. Plasma levels of organ dysfunction markers increased during the first 6 h after AT and subsequently declined, indicating an early, temporal impairment of the function on a multi-organ level. The established highly reproducible murine blunt AT, with time- and trauma-severity-dependent organ injury patterns, systemic inflammatory response, and impairment of various organ functions, reflects characteristics of human AT. In the future, this model may help to study the complex immuno-pathophysiological consequences and innovative therapeutic approaches after blunt AT.


Assuntos
Traumatismos Abdominais/complicações , Injúria Renal Aguda/patologia , Traumatismos por Explosões/complicações , Fígado/patologia , Traumatismo Múltiplo/complicações , Pâncreas/patologia , Injúria Renal Aguda/etiologia , Animais , Fígado/lesões , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pâncreas/lesões , Pâncreas/metabolismo
20.
Mol Psychiatry ; 26(8): 3778-3794, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32051550

RESUMO

Older patients with severe physical trauma are at high risk of developing neuropsychiatric syndromes with global impairment of cognition, attention, and consciousness. We employed a thoracic trauma (TxT) mouse model and thoroughly analyzed age-dependent spatial and temporal posttraumatic alterations in the central nervous system. Up to 5 days after trauma, we observed a transient 50% decrease in the number of excitatory synapses specifically in hippocampal pyramidal neurons accompanied by alterations in attention and motor activity and disruption of contextual memory consolidation. In parallel, hippocampal corticotropin-releasing hormone (CRH) expression was highly upregulated, and brain-derived neurotrophic factor (BDNF) levels were significantly reduced. In vitro experiments revealed that CRH application induced neuronal autophagy with rapid lysosomal degradation of BDNF via the NF-κB pathway. The subsequent synaptic loss was rescued by BDNF as well as by specific NF-κB and CRH receptor 1 (CRHR1) antagonists. In vivo, the chronic application of a CRHR1 antagonist after TxT resulted in reversal of the observed histological, molecular, and behavioral alterations. The data suggest that neuropsychiatric syndromes (i.e., delirium) after peripheral trauma might be at least in part due to the activation of the hippocampal CRH/NF-κB/BDNF pathway, which results in a dramatic loss of synaptic contacts. The successful rescue by stress hormone receptor antagonists should encourage clinical trials focusing on trauma-induced delirium and/or other posttraumatic syndromes.


Assuntos
Delírio , Neurônios , Animais , Hormônio Liberador da Corticotropina , Humanos , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Camundongos , Receptores de Hormônio Liberador da Corticotropina , Síndrome
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA