Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta Mol Basis Dis ; 1863(8): 1919-1932, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28347844

RESUMO

Autophagy, a conservative degradation process for long-lived and damaged proteins, participates in a cascade of biological processes including aging. A number of autophagy regulators have been identified. Here we demonstrated that mitochondrial aldehyde dehydrogenase (ALDH2), an enzyme with the most common single point mutation in humans, governs cardiac aging through regulation of autophagy. Myocardial mechanical and autophagy properties were examined in young (4months) and old (26-28months) wild-type (WT) and global ALDH2 transgenic mice. ALDH2 overexpression shortened lifespan by 7.7% without affecting aging-associated changes in plasma metabolic profiles. Myocardial function was compromised with aging associated with cardiac hypertrophy, the effects were accentuated by ALDH2. Aging overtly suppressed autophagy and compromised autophagy flux, the effects were exacerbated by ALDH2. Aging dampened phosphorylation of JNK, Bcl-2, IKKß, AMPK and TSC2 while promoting phosphorylation of mTOR, the effects of which were exaggerated by ALDH2. Co-immunoprecipitation revealed increased dissociation between Bcl-2 and Beclin-1 (result of decreased Bcl-2 phosphorylation) in aging, the effect of which was exacerbated with ALDH2. Chronic treatment of the autophagy inducer rapamycin alleviated aging-induced cardiac dysfunction in both WT and ALDH2 mice. Moreover, activation of JNK and inhibition of either Bcl-2 or IKKß overtly attenuated ALDH2 activation-induced accentuation of cardiomyocyte aging. Examination of the otherwise elderly individuals revealed a positive correlation between cardiac function/geometry and ALDH2 gene mutation. Taken together, our data revealed that ALDH2 enzyme may suppress myocardial autophagy possibly through a complex JNK-Bcl-2 and IKKß-AMPK-dependent mechanism en route to accentuation of myocardial remodeling and contractile dysfunction in aging. This article is part of a Special Issue entitled: Genetic and epigenetic control of heart failure - edited by Jun Ren & Megan Yingmei Zhang.


Assuntos
Aldeído-Desidrogenase Mitocondrial/metabolismo , Autofagia , Longevidade , Miocárdio/enzimologia , Aldeído-Desidrogenase Mitocondrial/genética , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Miocárdio/patologia
2.
Biochim Biophys Acta ; 1852(2): 343-52, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24993069

RESUMO

Autophagy, a conservative degradation process for long-lived and damaged proteins, participates in a variety of biological processes including obesity. However, the precise mechanism of action behind obesity-induced changes in autophagy still remains elusive. This study was designed to examine the role of the antioxidant catalase in high fat diet-induced changes in cardiac geometry and function as well as the underlying mechanism of action involved with a focus on autophagy. Wild-type (WT) and transgenic mice with cardiac overexpression of catalase were fed low or high fat diet for 20 weeks prior to assessment of myocardial geometry and function. High fat diet intake triggered obesity, hyperinsulinemia, and hypertriglyceridemia, the effects of which were unaffected by catalase transgene. Myocardial geometry and function were compromised with fat diet intake as manifested by cardiac hypertrophy, enlarged left ventricular end systolic and diastolic diameters, fractional shortening, cardiomyocyte contractile capacity and intracellular Ca²âº mishandling, the effects of which were ameliorated by catalase. High fat diet intake promoted reactive oxygen species production and suppressed autophagy in the heart, the effects of which were attenuated by catalase. High fat diet intake dampened phosphorylation of inhibitor kappa B kinase ß(IKKß), AMP-activated protein kinase (AMPK) and tuberous sclerosis 2 (TSC2) while promoting phosphorylation of mTOR, the effects of which were ablated by catalase. In vitro study revealed that palmitic acid compromised cardiomyocyte autophagy and contractile function in a manner reminiscent of fat diet intake, the effect of which was significantly alleviated by inhibition of IKKß, activation of AMPK and induction of autophagy. Taken together, our data revealed that the antioxidant catalase counteracts against high fat diet-induced cardiac geometric and functional anomalies possibly via an IKKß-AMPK-dependent restoration of myocardial autophagy. This article is part of a Special Issue entitled: Autophagy and protein quality control in cardiometabolic diseases.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Antioxidantes/metabolismo , Autofagia , Catalase/metabolismo , Dieta Hiperlipídica , Coração/fisiopatologia , Quinase I-kappa B/metabolismo , Animais , Autofagia/efeitos dos fármacos , Cálcio/metabolismo , Cardiomegalia/enzimologia , Cardiomegalia/patologia , Cardiomegalia/fisiopatologia , Ecocardiografia , Comportamento Alimentar/efeitos dos fármacos , Coração/efeitos dos fármacos , Espaço Intracelular/metabolismo , Masculino , Camundongos Transgênicos , Modelos Biológicos , Contração Miocárdica/efeitos dos fármacos , Ácido Palmítico/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos
3.
J Hepatol ; 59(2): 308-17, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23583271

RESUMO

BACKGROUND & AIMS: Circulating insulin-like growth factor-1 (IGF-1) plays a pivotal role in mediating the aging process. This study was designed to evaluate the effect of liver IGF-1 deficiency (LID) on aging-induced changes in hepatic function and underlying mechanisms, with a focus on autophagy. METHODS: Plasma and liver samples were obtained from young (3-mo) and aged (24-mo) wild type (WT) and LID mice. Levels of AST, ALT, triglyceride, hepatic lipofuscin, steatosis, fibrosis, and nuclear morphology were analyzed. Western blot was employed to evaluate autophagy. Human HepG2 cells were treated with free fatty acid (FFA) to mimic hepatic aging in the absence or presence of IGF-1 siRNA. SA-ß-gal activity was detected using flow cytometry and a fluorescence microplate reader. GFP-LC3 was used to assess autophagy activity in HepG2 cells. RESULTS: Median survival was longer in LID mice compared with WT mice. Aging was associated with elevated levels of triglyceride, AST and ALT, lipofuscin accumulation, steatosis, fibrosis and nuclear injury, which were significantly attenuated by liver IGF-1 deficiency. Levels of autophagy were suppressed in senescent livers, the effect was reversed in the liver of IGF-1 deficient mice. In HepG2 cells, FFA induced the accumulation of ß-gal, which was dramatically suppressed by IGF-1 knockdown. Importantly, inhibiting autophagy using 3-methyladenine mitigated IGF-1 knockdown-induced preservation of autophagic vacuole formation and inhibition of ß-gal accumulation in the presence of FFA in HepG2 cells. CONCLUSIONS: Our data revealed that IGF-1 deficiency ameliorated aging-induced hepatic injury, possibly through preventing a concomitant diminution in autophagy. These data provide new insight into the role of IGF-1 and autophagy in the management of aging-induced hepatic injury.


Assuntos
Envelhecimento/patologia , Envelhecimento/fisiologia , Autofagia/fisiologia , Fator de Crescimento Insulin-Like I/deficiência , Fígado/patologia , Fígado/fisiologia , Animais , Núcleo Celular/patologia , Senescência Celular , Estresse do Retículo Endoplasmático , Ácidos Graxos não Esterificados/metabolismo , Fígado Gorduroso/prevenção & controle , Células Hep G2 , Hepatócitos/patologia , Hepatócitos/fisiologia , Humanos , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/fisiologia , Lipofuscina/metabolismo , Cirrose Hepática/prevenção & controle , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout
4.
Exp Physiol ; 94(9): 984-94, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19561140

RESUMO

5-[5-(2-Nitrophenyl) furfuryliodine]-1,3-diphenyl-2-thiobarbituric acid (UCF-101) is a protease inhibitor which was reported to protect against ischaemic heart damage and apoptosis. This study evaluated the impact of UCF-101 on steptozotocin (STZ)-induced diabetic cardiomyocyte dysfunction. Adult FVB mice were made diabetic with a single injection of STZ (200 mg kg(1)). Two weeks after STZ injection, cardiomyocytes from control and STZ-treated mice were isolated and treated with UCF-101 (20 mum for 1 h). Cardiomyocyte contractile properties were analysed, including peak shortening (PS), maximal velocity of shortening/relengthening (+/-dL/dt), time to PS (TPS) and time to 90% relengthening (TR(90)). Steptozotocin-induced diabetes depressed PS and +/-dL/dt and prolonged TPS and TR(90) in cardiomyocytes, all of which were significantly alleviated by UCF-101. Immunoblotting analysis showed that UCF-101 significantly alleviated STZ-induced loss of phospholamban phosphorylation without affecting sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA2a) and phospholamban. Steptozotocin reduced AMP-activated protein kinase (AMPK) phosphorylation at Thr172 of the catalytic subunit without affecting total AMPK expression, which was restored by UCF-101. Short-term exposure to UCF-101 did not change the expression of X-linked inhibitor of apoptosis protein (XIAP) and Omi stress-regulated endoprotease, high temperature requirement protein A2 (Omi/HtrA2), favouring an apoptosis-independent mechanism. Both the AMPK activator resveratrol and the antioxidant N-acetylcysteine mimicked the UCF-101-induced beneficial effect in STZ-induced diabetic cardiomyocytes. In addition, UCF-101 promoted the phosphorylation of p38 mitogen-activated protein kinases and c-Jun N-terminal kinase (JNK) after 15 min of incubation, while it failed to affect the phosphorylation of extracellular signal-regulated kinase (ERK) and glycogen synthase kinase-3beta (GSK-3beta) within 120 min in H9C2 myoblasts. Taken together, these results indicate that UCF-101 protects against STZ-induced cardiomyocyte contractile dysfunction, possibly via an AMPK-associated mechanism.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Diabetes Mellitus Experimental/tratamento farmacológico , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Inibidores de Proteases/farmacologia , Pirimidinonas/farmacologia , Tionas/farmacologia , Acetilcisteína/farmacologia , Animais , Antioxidantes/farmacologia , Proteínas de Ligação ao Cálcio/metabolismo , Cardiomiopatias/complicações , Cardiomiopatias/fisiopatologia , Cardiomiopatias/prevenção & controle , Complicações do Diabetes/fisiopatologia , Complicações do Diabetes/prevenção & controle , Diabetes Mellitus Experimental/fisiopatologia , Serina Peptidase 2 de Requerimento de Alta Temperatura A , Técnicas In Vitro , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Camundongos , Proteínas Mitocondriais/metabolismo , Contração Miocárdica/fisiologia , Miócitos Cardíacos/fisiologia , Resveratrol , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Serina Endopeptidases/metabolismo , Estilbenos/farmacologia , Estreptozocina/toxicidade , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA