RESUMO
ß-glucans are frequently included in the diet of healthy common carp Cyprinus carpio as a pre-emptive measure for combatting disease. In order to study the effect this has on the relationship between the gut bacteria and host immune response, carp were maintained on either a ß-glucan free diet or feed containing 0.1% MacroGard®, a ß-1/3, 1/6-glucan, for up to 7 weeks and analysis of innate immune gene expression and molecular analysis of the gut bacteria was performed. The data reveals feeding of MacroGard® to healthy carp does not induce bactericidal innate immune gene expression in the gut but does appear to alter bacterial species richness that did not have a negative effect on overall health. Analysis of innate immune gene expression within the upper midgut revealed that there were significant changes over time in the expression of Interleukin (il)-1ß, inducible nitric oxide synthase (inos), mucin (muc2) and C-reactive protein (crp2). Diet did not affect the number of copies of the bacterial 16s rDNA gene in the gut, used as a as a measure of total bacteria population size. However, PCR-denaturing gradient gel electrophoresis (DGGE) analysis revealed a shift in bacterial species richness with MacroGard feeding. Bactericidal immune gene expression of crp2, muc2 and il-1ß was weakly correlated with gut bacteria population size indicating a potentially limited role of these genes in interacting with the gut bacteria in healthy carp in order to maintain gut homeostatic conditions. These findings highlight the importance of considering both host immunity and the microbiome together in order to fully elucidate the effeect of immunomodulants, such as ß-glucans, upon gut health.
Assuntos
Bactérias/efeitos dos fármacos , Carpas , Dieta/veterinária , Suplementos Nutricionais , Microbioma Gastrointestinal/efeitos dos fármacos , beta-Glucanas/farmacologia , Animais , Bactérias/classificaçãoRESUMO
BACKGROUND: In Plasmodium falciparum the monoallelic expression of var virulence genes is regulated through epigenetic mechanisms. A study in the Gambia showed that an increase in var genes commonly expressed in patients with severe malaria is associated with fever and high blood lactate. A strong association was demonstrated between the upregulation of PfSir2A and group B var genes. A subsequent study in Kenya extended this association to show a link between elevated expression of PfSir2A and overall var transcript levels. We investigate here the link between heat shock and/or lactate levels on sirtuin and var gene expression levels in vitro. METHODS: In vitro experiments were conducted using laboratory and recently-laboratory-adapted Kenyan isolates of P. falciparum. To investigate a potential cause-and-effect relationship between host stress factors and parasite gene expression, qPCR was used to measure the expression of sirtuins and var genes after highly synchronous cultured parasites had been exposed to 2 h or 6 h of heat shock at 40 °C or elevated lactate. RESULTS: Heat shock was shown to increase the expression ofPfSir2B in the trophozoites, whereas exposure to lactate was not. After the ring stages were exposed to heat shock and lactate, there was no alteration in the expression of sirtuins and severe-disease-associated upsA and upsB var genes. The association between high blood lactate and sirtuin/var gene expression that was previously observed in vivo appears to be coincidental rather than causative. CONCLUSIONS: This study demonstrates that heat stress in a laboratory and recently-laboratory-adapted isolates of P. falciparum results in a small increase in PfSir2B transcripts in the trophozoite stages only. This finding adds to our understanding of how patient factors can influence the outcome of Plasmodium falciparum infections.