Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; : e202402056, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38962947

RESUMO

The synthesis of new compounds is an important pillar for the advancement of the field of chemistry and adjacent fields. In this regard, over the last decades huge efforts have been made to not only develop new molecular entities but also more efficient sustainable synthetic methodologies due to the increasing concerns over environmental sustainability. In this context, we have developed synthetic routes to novel corannulene flanked imidazolium bromide NHC precursors both in the solid state and solution phases. Our work presents a comprehensive comparative study of mechanochemical routes and conventional solution-based methods. Green metrics and energy consumption comparison were performed for both routes reveal ball-milling generation of these compounds to be an environmentally greener technique to produce such precursors compared to conventional solvent-based methods. In addition, we have demonstrated proof-of-concept of the herein reported corannulene flanked NHCs to be robust ligands to transition metals and their ligand substitution reactions.

2.
J Am Chem Soc ; 145(23): 12475-12486, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37267593

RESUMO

Artificial molecular machines have captured the full attention of the scientific community since Jean-Pierre Sauvage, Fraser Stoddart, and Ben Feringa were awarded the 2016 Nobel Prize in Chemistry. The past and current developments in molecular machinery (rotaxanes, rotors, and switches) primarily rely on organic-based compounds as molecular building blocks for their assembly and future development. In contrast, the main group chemical space has not been traditionally part of the molecular machine domain. The oxidation states and valency ranges within the p-block provide a tremendous wealth of structures with various chemical properties. Such chemical diversity─when implemented in molecular machines─could become a transformative force in the field. Within this context, we have rationally designed a series of NH-bridged acyclic dimeric cyclodiphosphazane species, [(µ-NH){PE(µ-NtBu)2PE(NHtBu)}2] (E = O and S), bis-PV2N2, displaying bimodal bifurcated R21(8) and trifurcated R31(8,8) hydrogen bonding motifs. The reported species reversibly switch their topological arrangement in the presence and absence of anions. Our results underscore these species as versatile building blocks for molecular machines and switches, as well as supramolecular chemistry and crystal engineering based on cyclophosphazane frameworks.

3.
Faraday Discuss ; 241(0): 63-78, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36218327

RESUMO

A series of four photoluminescent Al and In complexes were synthesised using an environmentally-benign mechanosynthesis strategy. Sterically crowded 3,5-di-tert-butyl functionalised salophen and salen ligands and their respective complexes have been synthesised in the solid-state and fully characterised. Subsequent photophysics and electrochemistry studies of the resulting complexes suggest that these new group 13 complexes can be viable alternatives to traditional photoluminescent complexes based on expensive and low abundant noble metals. The herein-reported strategy avoids the use of organic solvents and provides a process with low environmental impact and enhanced energy efficiency.


Assuntos
Complexos de Coordenação , Complexos de Coordenação/química , Ligantes , Cor
4.
Angew Chem Int Ed Engl ; 59(49): 22100-22108, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32696527

RESUMO

We have synthesized a completely new family of acyclic trimeric cyclodiphosphazane compounds comprising NH, Ni Pr, Nt Bu and NPh bridging groups. In addition, the first NH-bridged acyclic dimeric cyclophosphazane has been produced. The trimeric species display highly tuneable characteristics so that the distance between the terminal N(H)R moieties can be readily modulated by the steric bulk present in the bridging groups (ranging from ≈6 to ≈10 Å). Moreover, these species exhibit pronounced topological changes when a weak non-bonding NH⋅⋅⋅π aryl interaction is introduced. Finally, the NH-bridged chloride binding affinities have been calculated and benchmarked along with the existing experimental data available for monomeric cyclodiphosphazanes. Our results underscore these species as promising hydrogen bond donors for supramolecular host-guest applications.

5.
Commun Chem ; 5(1): 59, 2022 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-36697579

RESUMO

Inorganic macrocycles remain challenging synthetic targets due to the limited number of strategies reported for their syntheses. Among these species, large fully inorganic cyclodiphosphazane macrocycles have been experimentally and theoretically highlighted as promising candidates for supramolecular chemistry. In contrast, their hybrid organic-inorganic counterparts are lagging behind due to the lack of synthetic routes capable of controlling the size and topological arrangement (i.e., folded vs unfolded) of the target macrocycle, rendering the synthesis of differently sized macrocycles a tedious screening process. Herein, we report-as a proof-of-concept-the combination of pre-arranged building blocks and a two-step synthetic route to rationally enable access a large unfolded tetrameric macrocycle, which is not accessible via conventional synthetic strategies. The obtained macrocycle hybrid cyclodiphosphazane macrocycle, cis-[µ-P(µ-NtBu)]2(µ-p-OC6H4C(O)O)]4[µ-P(µ-NtBu)]2 (4), displays an unfolded open-face cavity area of 110.1 Å2. Preliminary theoretical host-guest studies with the dication [MeNC5H4]22+ suggest compound 4 as a viable candidate for the synthesis of hybrid proto-rotaxanes species based on phosphazane building blocks.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA