Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chemphyschem ; 11(2): 466-73, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20049764

RESUMO

Transient absorption spectroscopy is used to study the excited-state dynamics of Co(3)(dpa)(4)(NCS)(2), where dpa is the ligand di(2-pyridyl)amido. The pi pi*, charge-transfer, and d-d transition states are excited upon irradiation at wavelengths of 330, 400 and 600 nm, respectively. Similar transient spectra are observed under the experimental temporal resolution and the transient species show weak absorption. We thus propose that a low-lying metal-centered d-d state is accessed immediately after excitation. Analyses of the experimental kinetic traces reveal rapid conversion from the ligand-centered pi pi* and the charge-transfer states to this metal-centered d-d state within 100 fs. The excited molecule then crosses to a second d-d state within the ligand-field manifold, with a time coefficient of 0.6-1.4 ps. Because the ground-state bleaching band recovers with a time coefficient of 10-23 ps, we propose that an excited molecule crosses from the low-lying d-d state either directly within the same spin system or with spin crossing via the state (2)B to the ground state (2)A(2) (symmetry group C(4)). In this trimetal string complex, relaxation to the ground electronic surface after excitation is thus rapid.

2.
Chemphyschem ; 11(2): 517-24, 2010 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-20029884

RESUMO

The excited-state dynamics of Ni(3)(dpa)(4)X(2), in which dpa is the ligand di(2-pyridyl)amido and X = NCS or Cl, are investigated by transient absorption spectroscopy. The pi pi* and dd states are excited upon irradiation at wavelengths of 330 and 600 nm, respectively. Similar transient spectra are observed under the experimental temporal resolution. The transient species also show weak absorption. It is proposed that a low-lying metal-centered dd state is accessed immediately after excitation. Analyses of the experimental kinetic traces reveal a rapid conversion from a ligand-centered pi pi* state to a metal-centered dd state in 0.1-0.4 ps. Vibrational cooling occurs with a time coefficient of 3.0-15.9 ps. From the spectral shift observed in the transient spectra relative to the steady-state spectra, the dd state is assigned as B(1)/B(2)(Ni(t)). This dd state eventually converts to the electronic ground state, in about 100 ps for the isothiocyanate complex and 200 ps for the chloride. In this trimetal string complex, relaxation to the ground electronic surface after excitation is therefore rapid.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA