Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Appl Toxicol ; 43(12): 1899-1915, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37551865

RESUMO

We have adapted a semiautomated method for tracking Caenorhabditis elegans spontaneous locomotor activity into a quantifiable assay by developing a sophisticated method for analyzing the time course of measured activity. The 16-h worm Adult Activity Test (wAAT) can be used to measure C. elegans activity levels for efficient screening for pharmacological and toxicity-induced effects. As with any apical endpoint assay, the wAAT is mode of action agnostic, allowing for detection of effects from a broad spectrum of response pathways. With caffeine as a model mild stimulant, the wAAT showed transient hyperactivity followed by reversion to baseline. Mercury chloride (HgCl2 ) produced an early dose-response hyperactivity phase followed by pronounced hypoactivity, a behavior pattern we have termed a toxicant "escape response." Methylmercury chloride (meHgCl) produced a similar pattern to HgCl2 , but at much lower concentrations, a weaker hyperactivity response, and more pronounced hypoactivity. Sodium arsenite (NaAsO2 ) and dimethylarsinic acid (DMA) induced hypoactivity at high concentrations. Acute toxicity, as measured by hypoactivity in C. elegans adults, was ranked: meHgCl > HgCl2 > NaAsO2 = DMA. Caffeine was not toxic with the wAAT at tested concentrations. Methods for conducting the wAAT are described, along with instructions for preparing C. elegans Habitation Medium, a liquid nutrient medium that allows for developmental timing equivalent to that found with C. elegans grown on agar with OP50 Escherichia coli feeder cultures. A de novo mathematical parametric model for adult C. elegans activity and the application of this model in ranking exposure toxicity are presented.


Assuntos
Caenorhabditis elegans , Modelos Teóricos , Animais , Cloreto de Mercúrio/toxicidade , Escherichia coli
2.
J Appl Toxicol ; 37(1): 50-59, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27443595

RESUMO

Caenorhabditis elegans is a small nematode that can be maintained at low cost and handled using standard in vitro techniques. Unlike toxicity testing using cell cultures, C. elegans toxicity assays provide data from a whole animal with intact and metabolically active digestive, reproductive, endocrine, sensory and neuromuscular systems. Toxicity ranking screens in C. elegans have repeatedly been shown to be as predictive of rat LD50 ranking as mouse LD50 ranking. Additionally, many instances of conservation of mode of toxic action have been noted between C. elegans and mammals. These consistent correlations make the case for inclusion of C. elegans assays in early safety testing and as one component in tiered or integrated toxicity testing strategies, but do not indicate that nematodes alone can replace data from mammals for hazard evaluation. As with cell cultures, good C. elegans culture practice (GCeCP) is essential for reliable results. This article reviews C. elegans use in various toxicity assays, the C. elegans model's strengths and limitations for use in predictive toxicology, and GCeCP. Published 2016. This article is a U.S. Government work and is in the public domain in the USA. Journal of Applied Toxicology published by John Wiley & Sons Ltd.


Assuntos
Alternativas ao Uso de Animais , Caenorhabditis elegans/efeitos dos fármacos , Testes de Toxicidade/métodos , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Dose Letal Mediana
3.
J Appl Toxicol ; 33(10): 1131-42, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23636779

RESUMO

Studies on the effects of nanomaterial exposure in mammals are limited, and new methods for rapid risk assessment of nanomaterials are urgently required. The utility of Caenorhabditis elegans cultured in axenic liquid media was evaluated as an alternative in vivo model for the purpose of screening nanomaterials for toxic effects. Spherical silver nanoparticles of 10 nm diameter (10nmAg) were used as a test material, and ionic silver from silver acetate as a positive control. Silver uptake and localization, larval growth, morphology and DNA damage were utilized as endpoints for toxicity evaluation. Confocal reflection analysis indicated that 10nmAg localized to the lumen and tissues of the digestive tract of C. elegans. 10nmAg at 10 µg ml(-1) reduced the growth of C. elegans larvae, and induced oxidative damage to DNA as measured by 8-OH guanine levels. Consistent with previously published studies using mammalian models, ionic silver suppressed growth in C. elegans larvae to a greater extent than 10nmAg. Our data suggest that medium-throughput growth screening and DNA damage analysis along with morphology assessments in C. elegans could together provide powerful tools for rapid toxicity screening of nanomaterials.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Prata/toxicidade , Acetatos/química , Animais , Caenorhabditis elegans/crescimento & desenvolvimento , Fenômenos Químicos , Cromatografia Gasosa , DNA de Helmintos/genética , Relação Dose-Resposta a Droga , Determinação de Ponto Final , Íons/química , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Nanopartículas Metálicas/química , Prata/química , Compostos de Prata/química , Espectrometria de Massas em Tandem , Testes de Toxicidade
4.
Curr Res Toxicol ; 3: 100071, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35602005

RESUMO

Exposures to mercury and arsenic are known to pose significant threats to human health. Effects specific to organic vs. inorganic forms of these toxic elements are less understood however, especially for organic dimethylarsinic acid (DMA), which has recently been detected in pups of rodent dams orally exposed to inorganic sodium (meta)arsenite (NaAsO2). Caenorhabditis elegans is a small animal alternative toxicity model. To fill data gaps on the effects of DMA relative to NaAsO2, C. elegans were exposed to these two compounds alongside more thoroughly researched inorganic mercury chloride (HgCl2) and organic methylmercury chloride (meHgCl). For timing of developmental milestone acquisition in C. elegans, meHgCl was 2 to 4-fold more toxic than HgCl2, and NaAsO2 was 20-fold more toxic than DMA, ranking the four compounds meHgCl > HgCl2 > NaAsO2 ≫ DMA for developmental toxicity. Methylmercury induced significant decreases in population locomotor activity levels in developing C. elegans. DMA was also associated with developmental hypoactivity, but at >100-fold higher concentrations than meHgCl. Transcriptional alterations in native genes were observed in wild type C. elegans adults exposed to concentrations equitoxic for developmental delay in juveniles. Both forms of arsenic induced genes involved in immune defense and oxidative stress response, while the two mercury species induced proportionally more genes involved in transcriptional regulation. A transgenic bioreporter for activation of conserved proteosome specific unfolded protein response was strongly activated by NaAsO2, but not DMA at tested concentrations. HgCl2 and meHgCl had opposite effects on a bioreporter for unfolded protein response in the endoplasmic reticulum. Presented experiments indicating low toxicity for DMA in C. elegans are consistent with human epidemiologic data correlating higher arsenic methylation capacity with resistance to arsenic toxicity. This work contributes to the understanding of the accuracy and fit-for-use categories for C. elegans toxicity screening and its usefulness to prioritize compounds of concern for further testing.

5.
Food Chem Toxicol ; 121: 583-592, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30266317

RESUMO

Due to the high cost and long duration of traditional testing methods for developmental neurotoxicity (DNT), only a small fraction of chemicals that humans are exposed to have been assessed for DNT activity. In order to ensure public safety, human-predictive methods for DNT detection that are faster and less resource intensive are urgently required. Using Caenorhabditis elegans, a novel worm Development and Activity test (wDAT) has been designed that uses a relatively inexpensive small-animal activity tracker and takes less than 4 days to complete. The wDAT was able to detect both developmental delay and hyperactivity for arsenic, lead, and mercury, heavy metals that are known human developmental neurotoxins and have been associated with hyperactivity in children. Lithium was also tested as a control developmental toxin that is not considered a mammalian neurotoxin. With the wDAT, lithium induced developmental delay but not hyperactivity. This initial assessment of a new assay for DNT detection indicates that the wDAT has potential for detecting at least some types of mammalian developmental neurotoxins. A planned 20-compound validation study will clarify the utility of the wDAT for predicitive toxicology.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/crescimento & desenvolvimento , Modelos Animais de Doenças , Metais Pesados/toxicidade , Neurônios/efeitos dos fármacos , Neurotoxinas/toxicidade , Animais , Avaliação Pré-Clínica de Medicamentos/métodos , Substâncias Perigosas , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Atividade Motora/efeitos dos fármacos , Reprodutibilidade dos Testes
6.
Toxicol Rep ; 1: 923-944, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-28962305

RESUMO

The in vivo toxicity to eukaryotes of nanosilver (AgNP) spheres and plates in two sizes each was assessed using the simple model organism Caenorhabditis elegans. For each shape, smaller AgNP size correlated with higher toxicity, as indicated by reduced larval growth. Smaller size also correlated with significant increases in silver uptake for silver nanospheres. Citrate coated silver spheres of 20 nm diameter induced an innate immune response that increased or held steady over 24 h, while regulation of genes involved in metal metabolism peaked at 4 h and subsequently decreased. For AgNP spheres, coating altered bioactivity, with a toxicity ranking of polyethylene glycol (PEG) > polyvinylpyrrolidone (PVP) ≅ branched polyethyleneimine (BPEI) > citrate, but silver uptake ranking of PEG > PVP > citrate > BPEI. Our findings in C. elegans correlate well with findings in rodents for AgNP size vs. uptake and toxicity, as well as for induction of immune effectors, while using methods that are faster and far less expensive, supporting the use of C. elegans as an alternative model for early toxicity screening.

7.
Food Chem Toxicol ; 50(9): 3280-90, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22771366

RESUMO

The utility of any model system for toxicity screening depends on the level of correlation between test responses and toxic reactions in humans. Assays in Caenorhabditis elegans can be fast and inexpensive, however few studies have been done comparing toxic responses in this easily cultured nematode with data on mammalian toxicity. Here we report that a screening assay for acute toxicity, using adult C. elegans grown in axenic liquid culture, replicated LD50 toxicity ranking in rat for five metals. This assay utilized the COPAS Biosort and propidium iodide (PI) as a fluorescent indicator of morbidity and mortality after 30-h exposures. We found that chronic toxicity assays of 2-week treatment duration, followed by analysis of PI induced red fluorescence levels, produced less consistent results than the acute assays. However, other chronic toxicity endpoints were compound and concentration specific, including changes in vulval and gonadal morphology, intestinal thickness and integrity, and the presence of retained internal eggs in post-reproductive animals. Some of these endpoints reflect similar findings in mammals, indicating that measurements of morbidity and mortality in conjunction with morphology analyses in C. elegans may have the potential to predict mammalian toxic responses.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Metais Pesados/toxicidade , Propídio/toxicidade , Animais , Dose Letal Mediana , Ratos
8.
Exp Cell Res ; 304(1): 265-73, 2005 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-15707591

RESUMO

Yeast Vps24p (vacuolar protein sorting) is part of a protein complex suggested to function in sorting/trafficking during endocytosis. We have characterized a mammalian homolog of the yeast protein, mVps24p, and examined its role in epidermal growth factor receptor trafficking. Endogenous mVps24p was distributed in both cytosol and in puncta and partially colocalized with markers for the trans-Golgi network. Adventitious expression of hrs or a mVps4p mutant deficient in ATPase activity caused a redistribution of both mVps24p and the M6PR to the resultant clustered/enlarged early endosomes. Expression of an mVps24p N-terminal fragment, that interacts with phosphatidylinositol 3,5-bisphosphate but not with mVps4p, produces enlarged early endosomes. More importantly, the mVps24p N-terminal fragment resulted in not only enhanced recycling, but also decreased degradation of the EGF receptor. These findings are consistent with a model in which mVps24p has a role in trafficking from the early endosome.


Assuntos
Endossomos/metabolismo , Receptores ErbB/metabolismo , Proteínas de Transporte Vesicular/fisiologia , Sequência de Aminoácidos , Animais , Complexos Endossomais de Distribuição Requeridos para Transporte , Endossomos/química , Células HeLa , Humanos , Camundongos , Dados de Sequência Molecular , Transporte Proteico , Alinhamento de Sequência , Proteínas de Transporte Vesicular/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA