Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
J Am Chem Soc ; 146(6): 3689-3699, 2024 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-38296825

RESUMO

G-quadruplex (G4) selective stabilizing ligands can regulate c-MYC gene expression, but the kinetic basis remains unclear. Determining the effects of ligands on c-MYC promoter G4s' folding/unfolding kinetics is challenging due to the polymorphic nature of G4s and the high energy barrier to unfold c-MYC promoter G4s. Here, we used single-molecule magnetic tweezers to manipulate a duplex hairpin containing a c-MYC promoter sequence to mimic the transiently denatured duplex during transcription. We measured the effects of six commonly used G4s binding ligands on the competition between quadruplex and duplex structures, as well as the folding/unfolding kinetics of G4s. Our results revealed two distinct roles for G4s selective stabilization: CX-5461 is mainly acting as c-MYC G4s stabilizer, reducing the unfolding rate (ku) of c-MYC G4s, whereas PDS and 360A also act as G4s chaperone, accelerating the folding rates (kf) of c-MYC G4s. qRT-PCR results obtained from CA46 and Raji cell lines demonstrated that G4s stabilizing ligands can downregulate c-MYC expression, while G4s stabilizer CX-5461 exhibited the strongest c-MYC gene suppression. These results shed light on the potential of manipulating G4s' folding/unfolding kinetics by ligands for precise regulation of promoter G4-associated biological activities.


Assuntos
Quadruplex G , Genes myc , Regiões Promotoras Genéticas , Ligantes
2.
Bioorg Chem ; 119: 105569, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34954572

RESUMO

Isocitrate dehydrogenases 1 (IDH1) catalyzes the oxidative decarboxylation of isocitrate to ɑ-ketoglutaric acid (α-KG). It is the most frequently mutated metabolic gene in human cancer and its mutations interfere with cell metabolism and epigenetic regulation, thus promoting tumorigenesis. In order to discover potent new mutant IDH1 inhibitors, based on the structure of marketed inhibitor AG-120 (Ivosidenib), we designed, synthesized and evaluated a series of linear unnatural peptide analogues via Ugi reaction, as potential mutant IDH1 inhibitors. All these compounds were evaluated for their inhibition on mutant IDH1 enzyme activity. The structure-activity relationship was discussed on the basis of experimental data, with an attempt to pave the way for future studies. Among them, 43 exhibited potent and selective enzyme inhibitory activity, and showed strong binding affinity with mutant IDH1. It can decrease the cellular concentration of 2-HG, and suppress the proliferation of HT1080 and IDH1 mutant-U-87 cells by selectively inhibiting the activity of mutant IDH1.


Assuntos
Antineoplásicos/farmacologia , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Isocitrato Desidrogenase/antagonistas & inibidores , Peptídeos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Estrutura Molecular , Mutação , Peptídeos/síntese química , Peptídeos/química , Relação Estrutura-Atividade , Células Tumorais Cultivadas
3.
Phytother Res ; 35(11): 6228-6240, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34494324

RESUMO

Although paclitaxel is a promising frontline chemotherapy agent for various malignancies, the clinical applications have been restricted by side effects, drug resistance, and cancer metastasis. The combination of paclitaxel and other agents could be the promising strategies against malignant tumor, which enhances the antitumor effect through synergistic effects, reduces required drug concentrations, and also suppresses tumorigenesis in multiple ways. In this study, we found that luteolin, a natural flavonoid compound, combined with low-dose paclitaxel synergistically regulated the proliferation, migration, epithelial-mesenchymal transition (EMT), and apoptosis of esophageal cancer cells in vitro, as well as synergistically inhibited tumor growth without obvious toxicity in vivo. The molecular mechanism of inhibiting cell migration and EMT processes may be related to the inhibition of SIRT1, and the mechanism of apoptosis induction is associated with the reactive oxygen species (ROS)/c-Jun N-terminal kinase (JNK) pathway-mediated activation of mitochondrial apoptotic pathway.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias Esofágicas , Apoptose , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Neoplasias Esofágicas/tratamento farmacológico , Humanos , Luteolina/farmacologia , Paclitaxel/farmacologia
4.
J Cell Biochem ; 120(4): 6127-6136, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30317677

RESUMO

Malignant glioma is a severe type of brain tumor with a grim prognosis. The occurrence of resistance compromises the efficacy of chemotherapy for glioma. Long noncoding RNA growth arrest-specific 5 (GAS5) has recently become an attractive target for cancer therapy by regulating cell growth, invasion, and migration. Nevertheless, its role in glioma chemoresistance remains elusive. In the current study, the expression of GAS5 was decreased in glioma cell lines, and lower levels of GAS5 were observed in U138 and LN18 glioma cells that had low sensitivity to cisplatin. Functional assay confirmed that knockdown of GAS5 enhanced cell resistance to cisplatin in U87 cells, which had a relatively high expression of GAS5. Conversely, elevation of GAS5 increased cell sensitivity to cisplatin in U138 cells that had a relatively low expression of GAS5. Mechanistically, cisplatin exposure evoked excessive autophagy concomitant with an increase in autophagy-related LC3II expression and a decrease in autophagy substrate p62 expression, which was reversely muted after GAS5 overexpression. In addition, GAS5 restored cisplatin-inhibited mammalian target of rapamycin (mTOR) activation. Preconditioning with mTOR antagonist rapamycin engendered not only mTOR inhibition but also abrogated GAS5-mediated depression in cisplatin-evoked autophagy. Notably, blocking the mTOR pathway also attenuated GAS5-increased sensitivity to cisplatin in U138 cells. Cumulatively, these findings indicate that GAS5 may blunt the resistance of glioma cells to cisplatin by suppressing excessive autophagy through the activation of mTOR signaling, implying a promising therapeutic strategy against chemoresistance in glioma.


Assuntos
Cisplatino/farmacologia , Glioma/genética , RNA Longo não Codificante/metabolismo , Autofagia/efeitos dos fármacos , Autofagia/genética , Western Blotting , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , RNA Longo não Codificante/genética , RNA Interferente Pequeno/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
5.
J Cell Biochem ; 120(4): 6322-6329, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30362154

RESUMO

Purinergic receptor P2X 4 (P2X4R), a member of purinergic channels family and a subtype of ionotropic adenosine triphosphate receptors, plays a critical role in tumorigenesis. Evidence suggested that P2X4R is expressed in rat C6 glioma model, however, its role and the underlying mechanism of action are still unclear in human glioblastoma multiforme (GBM). In the current study, our aim is to examine the function and the molecular basis of P2X4R in GBM. We first observed that GBM cells, U251, T98, U87, U373, and A172 were all high expressed P2X4R, when compared with the normal human astrocytes (NHA) cells. To gain the function of P2X4R, P2X4R silence cells were constructed by transfection with P2X4R small interfering RNA (siRNA). We found that P2X4R deletion impeded T98 and U87 cell viability and proliferation, and further studies indicated that cell apoptosis and caspase-3 activity was increased in T98 and U87 cell transfected with P2X4R siRNA. Subsequently, we confirmed that P2X4R silence suppressed brain-derived neurotrophic factor (BDNF), Trk receptor tyrosine kinases (TrkB), and activating transcription factor 4 (ATF4) expression in T98 and U87 cells. And P2X4R siRNA-induced ATF4-expression inhibition dependent on BDNF/TrkB signaling pathway. The impact of P2X4R silence on T98 and U87 cell growth and apoptosis was reversed by ATF4 overexpression. In summary, this study provides the first evidence that P2X4R plays important roles in GBM cell growth and apoptosis.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , RNA Interferente Pequeno/farmacologia , Receptores Purinérgicos P2X4/genética , Receptores Purinérgicos P2X4/metabolismo , Transdução de Sinais , Fator 4 Ativador da Transcrição/metabolismo , Neoplasias Encefálicas/genética , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioblastoma/genética , Humanos , Glicoproteínas de Membrana/metabolismo , Receptor trkB/metabolismo , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
6.
J Cell Biochem ; 120(5): 7794-7801, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30443974

RESUMO

Transmembrane protease serine 3 (TMPRSS3) is a member of type II transmembrane serine proteases (TTSP) family, which play important roles in the development and progression of various cancers. However, the role of TMPRSS3 in glioma remains unclear. In the present study, we evaluated the expression patterns of TMPRSS3 in clinical tumor samples and glioma cell lines. The results showed that TMPRSS3 was highly expressed in both human glioma tissues and cell lines. Knockdown of TMPRSS3 in glioma cells by transfection with small interfering RNA targeting TMPRSS3 (si-TMPRSS3) significantly suppressed cell proliferation and migration/invasion. Moreover, knockdown of TMPRSS3 markedly elevated the apoptotic rate of glioma cells. Si-TMPRSS3 transfection also resulted in a remarkable increase in bax expression and a notable decrease in bcl-2 expression in glioma cells. Furthermore, TMPRSS3 knockdown markedly suppressed the expressions of Notch1 and Hes1. The results indicated that knockdown of TMPRSS3 exhibited antiglioma effect, which is associated with the inactivation of the Notch signaling pathway. These findings suggested that TMPRSS3 might be used as a therapeutic target for glioma treatment.

7.
Exp Neurol ; 371: 114577, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37863305

RESUMO

BACKGROUND: Early brain injury (EBI) refers to a severe brain injury that occurs within hours to days after subarachnoid hemorrhage (SAH). Neuronal damage in EBI is considered a key factor leading to poor prognosis. Currently, our understanding of the mechanisms of neuronal damage, such as neuronal autophagy, is still incomplete. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key enzyme in metabolism and plays an important role in autophagy. Based on this, this study will further explore the regulation of autophagy by GAPDH after SAH, which may provide a new treatment strategy for improving the prognosis of SAH patients. METHODS: The rat SAH model was established by endovascular puncturing, and the trend of autophagy in hippocampal neurons at different time points was discussed. Additionally, an in vitro SAH model was created using the oxygenated hemoglobin and hippocampal neuronal HT22 cell line. Through siRNA and overexpression adenovirus techniques, we further investigated the relationship between the key enzyme GAPDH and autophagy in the in vitro SAH model. RESULTS: We observed significant neuronal damage in the hippocampus 24 h after SAH, and the proteomics showed significant enrichment of autophagy-related pathways at this time point. Further studies showed that the expression of LC3 and Beclin1 peaked at 24 h, and the nuclear translocation of GAPDH occurred simultaneously with SAH-induced neuronal autophagy. Our in vitro SAH model confirmed the role of GAPDH in regulating the level of autophagy in HT22 cells. Knockdown of GAPDH significantly reduced the level of autophagy, while overexpression of GAPDH increased the level of autophagy. CONCLUSION: This study shows the trend of autophagy in hippocampal neurons after SAH, and reveals the regulatory role of GAPDH in SAH-induced autophagy. However, further studies are needed to reveal the exact mechanism of GAPDH in the nuclear translocation regulation of autophagy and validate in animal models.


Assuntos
Lesões Encefálicas , Hemorragia Subaracnóidea , Ratos , Humanos , Animais , Hemorragia Subaracnóidea/metabolismo , Ratos Sprague-Dawley , Modelos Animais de Doenças , Lesões Encefálicas/metabolismo , Gliceraldeído-3-Fosfato Desidrogenases/genética , Autofagia/fisiologia , Apoptose/fisiologia
8.
Biol Trace Elem Res ; 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38888856

RESUMO

This research was designed to investigate the effects of cadmium on blood cell injury in cadmium-poisoned mice. Twenty mice were randomly divided into two groups: control group and model group. The control group was intraperitoneally injected with normal saline every day and the model group was intraperitoneally injected with 1.4 mg/kg cadmium solution every day. The experimental period was 28 days. The blood of the mice was collected for detection and hematological analysis. The results demonstrated that cadmium increased the number of white blood cells and the number of neutrophils in mice. Cadmium reduced the number of eosinophils, the number of basophils, the number of monocytes, the amount of lymphocytes, the number of red blood cells, the hemoglobin concentration, mean corpusular volume, mean corpusular hemoglobin, mean corpusular hemoglobin concentration, and the number of platelets in mice. In summary, cadmium caused some damage to white blood cells, red blood cells, and platelets in mice, but the direction of damage to different cells was inconsistent. The possible reason for this result is that cadmium damages the generation of blood cells, and the body takes corresponding defense measures.

9.
Environ Sci Pollut Res Int ; 31(27): 39774-39781, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38834928

RESUMO

This research investigated the effect of cadmium on the tissue and cell of kidney of the turtle Mauremys reevesii. Twenty turtles were injected with cadmium at 0, 7.5, 15, 30 mg/kg separately and five turtles were taken in each group at two weeks after exposure. Kidneys were immediately excised and macroscopic pathological changes were observed, then the kidneys were fixed in 4% paraformaldehyde for histopathological examination and fixed in 2.5% (v/v) glutaraldehyde for examination of ultra-structure. The tissues of kidney presented varying degrees of histopathological lesions in cadmium treated turtles by a dose-dependent manner under the light microscope. Under transmission electron microscope, renal tubules cells presented varying degrees of dose-dependent lesions. The results indicated that cadmium can cause cell damages to the kidney, in particular to the mitochondria. Mitochondria can be used as one biomarker in the monitoring of cadmium pollution and its quantitative risk assessments.


Assuntos
Cádmio , Rim , Tartarugas , Animais , Rim/efeitos dos fármacos , Rim/patologia , Cádmio/toxicidade
10.
Life Sci ; 343: 122530, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38401628

RESUMO

Cancer cell resistance presents a significant clinical challenge. The mechanisms underlying drug resistance in cancer cells are intricate and remain incompletely understood. Notably, tumor cell resistance often coincides with the epithelial-mesenchymal transition (EMT). In this study, we observed an elevation in autophagy levels following the development of drug resistance in oesophageal cancer cells. Inhibition of autophagy led to a reduction in drug-resistant cell migration and the inhibition of EMT. Furthermore, we identified an upregulation of SIRT1 expression in drug-resistant oesophageal cancer cells. Subsequent inhibition of SIRT1 expression in drug-resistant cells resulted in the suppression of autophagy levels, migration ability, and the EMT process. Our additional investigations revealed that a SIRT1 inhibitor effectively curbed tumor growth in human oesophageal cancer xenograft model mice (TE-1, TE-1/PTX) without evident toxic effects. This mechanism appears to be associated with the autophagy levels within the tumor tissue.


Assuntos
Autofagia , Neoplasias Esofágicas , Sirtuína 1 , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal , Neoplasias Esofágicas/tratamento farmacológico , Sirtuína 1/metabolismo
11.
Biol Trace Elem Res ; 201(6): 3000-3005, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35986187

RESUMO

This research studied the effects of cadmium on kidney function of the freshwater turtles Mauremys reevesii. Turtles were injected intraperitoneally with 0, 7.5, 15, and 30 mg kg-1 cadmium separately for once. The samples were gathered to check the kidney index, the contents of TP in kidney tissue, and the levels of CRE and BUN in the plasma of the turtles. Results showed that the concentration of TP was overall decreased with the extension of cadmium exposure time and the increasing of the exposure dose of cadmium. The CRE content in the plasma of each treatment group increased with the prolongation of exposure time in a dose-dependent, and the BUN levels of all poisoned groups showed a trend of increasing. The kidney index of treated turtles increased. In summary, cadmium could induce the increase of turtle kidney index, the content of CRE and BUN in plasma, and the decrease of TP content in the kidney.


Assuntos
Tartarugas , Animais , Cádmio/toxicidade , Água Doce
12.
Environ Sci Pollut Res Int ; 30(59): 123827-123831, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37991618

RESUMO

This research was designed to investigate the effects of cadmium (Cd) on liver function in turtle Mauremys reevesii. Turtles were divided into 4 groups at random. The turtles were injected intraperitoneally with Cd at 0, 7.5, 15, 30 mg kg-1 Cd chloride separately. Liver index was calculated. The activities of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and the content of TP in liver were examined with biochemical methods. The results indicated that the liver index of turtles changed obviously only at higher dose and longer time. The activities of ALT and AST in liver increased with prolongation of exposure time in a dose-dependent manner. TP content in liver was lower than that in the control. In summary, Cd had an obvious toxic effect on liver tissues of freshwater turtle Mauremys reevesii, and it was dose dependent with the extension of exposure time. But the results also showed that the turtle had strong tolerance to Cd.


Assuntos
Cádmio , Fígado , Tartarugas , Animais , Cádmio/toxicidade , Cloreto de Cádmio/toxicidade
13.
Vaccine ; 41(40): 5910-5917, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37604725

RESUMO

BACKGROUND: The immune protection from infection may wane over time as neutralizing antibody levels decline. We aimed to develop a nomogram to predict long-term immune persistence induced by two-dose BBIBP-CorV vaccine and calculate the neutralizing antibody decline probability of individuals. METHODS: In the initial study, a total of 809 participants were recruited and randomly allocated (1:1:1) to vaccination group with three two-dose schedules on days 0 and 14, 0 and 21, or 0 and 28. The participants with neutralizing antibody titers of 16 or above on day 28 after the second dose were followed up at month 3, 6 and 10. Multivariable Cox proportional hazards regression model and nomogram model were used to identify predictors associated with maintaining of neutralizing antibody levels during 10 months after the second dose. RESULTS: A total of 744 participants followed up at day 28 after the second dose. The participants with age ≥ 50 (aHR = 3.556, 95 %CI: 1.141-4.884, P = 0.028) were associated with a high risk of response loss (titers < 16). The participants who were in 0-28 d group (aHR = 0.403, 95 %CI: 0.177-0.919, P = 0.031), had an influenza vaccination history (aHR = 0.468, 95 %CI: 0.267-0.921, P = 0.033) or were female (aHR = 0.542, 95 %CI: 0.269-0.935, P = 0.035) tended to maintain immune persistence during 10 months after the second dose. The nomogram was constructed and showed moderate discrimination[C-index:0.711 (95 %CI: 0.652-0.770); AUC: 0.731 (95 %CI: 0.663-0.792)] and good calibration. CONCLUSIONS: From 28 days to 10 months after receipt of the second dose of the BBIBP-CorV vaccine, neutralizing antibody levels were substantially decreased, especially among men, among persons 50 years of age or older, among persons with the 0-14 d group, and among persons without history of influenza vaccination. TRIAL REGISTRATION: Chinese Clinical Trial Registry, ChiCTR2100041705, ChiCTR2100041706.


Assuntos
Vacinas contra Influenza , Influenza Humana , Masculino , Humanos , Feminino , Influenza Humana/prevenção & controle , Vacinação , Anticorpos Neutralizantes
14.
Expert Rev Vaccines ; 21(12): 1883-1893, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36303320

RESUMO

BACKGROUND: The immune persistence of neutralizing antibodies elicited by BBIBP-CorV vaccines on day 0-14, 0-21 and 0-28 schedule, and the immunogenicity and safety of a homologous booster dose after different priming vaccination regimens is scarcely reported. METHODS: : Responders (GMT≥16) at day 28, after priming with the two-dose vaccine, were followed up at 3, 6, and 10 months. Eligible participants received a homologous booster dose at month 10 and were followed-up 28 days post-booster. RESULTS: The GMT of neutralizing antibodies in 0-28d-10 m and 0-21d-10 m group were significantly higher than 0-14d-10 m group from month 3 (71.6 & 64.2 vs 46.4, p < 0.001) to month 10 (32.4 & 28.8 vs 20.3, p < 0.001) after the second dose. On day 28 post-booster, a remarkable rebound in neutralizing antibodies (246.2, 277.5, and 288.6, respectively) was observed in the three groups. All adverse reactions were mild after booster injection. CONCLUSIONS: The priming two-dose BBIBP-CorV vaccine with 0-28 days and 0-21 days schedule could lead to a longer persistence of neutralizing antibody than the 0-14 days schedule. Regardless of the priming vaccination regimens, a homologous booster dose led to a strong rebound in neutralizing antibodies and might persist for at least 18 months.


Assuntos
Anticorpos Neutralizantes , Vacinação , Humanos , Imunização Secundária , Anticorpos Antivirais , Imunogenicidade da Vacina
15.
Environ Sci Pollut Res Int ; 28(6): 6405-6410, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32989702

RESUMO

The research was designed to examine oxidative stress of the liver of turtle Mauremys reevesii caused by cadmium (Cd). Turtles were injected intraperitoneally with cadmium at the concentration of 7.5, 15, and 30 mg/kg, and 5 turtles were taken from each group after exposure for 1 week (1 w), 2 weeks (2 w), and 3 weeks (3 w). The activities of SOD and CAT as well as the contents of GSH and MDA in liver tissues were detected by using a kit. The results showed that the difference between the control group and the Cd-treated group was statistically significant with the increase of Cd concentration and the prolongation of exposure time, which suggested that Cd caused oxidative stress on the liver of turtles.


Assuntos
Cádmio , Tartarugas , Animais , Cádmio/metabolismo , Fígado/metabolismo , Estresse Oxidativo
16.
Environ Sci Pollut Res Int ; 28(6): 6811-6817, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33011946

RESUMO

This research was designed to investigate lipid peroxidation of the kidney of turtle (Mauremys reevesii) caused by cadmium. Turtles were injected intraperitoneally with cadmium at the concentration of 0 (control), 7.5, 15, and 30 mg/kg, and 5 turtles were taken from each group after exposure for 1 week (1 w), 2 weeks (2 w), and 3 weeks (3 w). Superoxide dismutase (SOD) and catalase (CAT) activities as well as glutathione (GSH) and malonyldialdehyde (MDA) contents in the homogenate of kidney tissue were analyzed. The results demonstrated that a short time of low dose of cadmium could stimulate the increase of SOD activity in the kidney of turtles, but a long time of high dose of cadmium could induce the decrease of SOD activity in the kidney of turtles. Cadmium could decrease CAT activity and GSH content in turtle kidney, but increased MDA content in turtle kidney. There were some other effects on the turtles, such as depression and diarrhea. The experimental results indicate that cadmium causes temporary oxidative stress on the kidney of turtles.


Assuntos
Cádmio , Tartarugas , Animais , Antioxidantes/metabolismo , Cádmio/metabolismo , Catalase/metabolismo , Rim/metabolismo , Peroxidação de Lipídeos , Estresse Oxidativo , Superóxido Dismutase/metabolismo , Tartarugas/metabolismo
17.
Front Oncol ; 11: 672222, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34150636

RESUMO

Drug resistance often occurs after chemotherapy in esophageal cancer patients, leading to cancer metastasis and recurrence. However, the relationship among cancer cell migration, recurrence and drug resistance in esophageal cancer drug-resistant cells has not been clearly explained. In this study, we constructed paclitaxel (PTX)-resistant esophageal cancer cells to explore the causes of drug resistance and poor prognosis after chemotherapy in esophageal cancer. Colony formation assay was used to evaluate the difference of colony formation between parental cells and drug resistance cells. Microsphere formation assay was used to examine the phenotype of stem cells. Wound healing and Transwell assays were used to detect the migration ability of drug-resistant cells. Western blotting and immunofluorescence assays were used to explore the mechanisms. Finally, we used nude mouse xenograft model to explore the tumor characteristics and the expression of relative proteins to verify our findings in vivo. Our study demonstrated that the cancer cell stemness characteristics exist in drug-resistant esophageal cancer cells, that expressed the biomarkers of stem cells and were prone to epithelial-mesenchymal transition (EMT). Our results suggested that the expression of EMT biomarkers and stemness-related proteins increased in esophageal cancer cells after continuously using chemotherapeutic drugs for a period of time. This study indicated that simultaneously targeting EMT and stemness could be a better strategy for the treatment of esophageal cancer drug resistance.

18.
J Med Chem ; 64(11): 7839-7852, 2021 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-34038131

RESUMO

Inspired by the success of dual-targeting drugs, especially bispecific antibodies, we propose to combine the concept of proteolysis targeting chimera (PROTAC) and dual targeting to design and synthesize dual PROTAC molecules with the function of degrading two completely different types of targets simultaneously. A library of novel dual-targeting PROTAC molecules has been rationally designed and prepared. A convergent synthetic strategy has been utilized to achieve high synthetic efficiency. These dual PROTAC structures are characterized using trifunctional natural amino acids as star-type core linkers to connect two independent inhibitors and E3 ligands together. In this study, gefitinib, olaparib, and CRBN or VHL E3 ligands were used as substrates to synthesize novel dual PROTACs. They successfully degraded both the epidermal growth factor receptor (EGFR) and poly(ADP-ribose) polymerase (PARP) simultaneously in cancer cells. Being the first successful example of dual PROTACs, this technique will greatly widen the range of application of the PROTAC method and open up a new field for drug discovery.


Assuntos
Desenho de Fármacos , Receptores ErbB/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteólise/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Gefitinibe/química , Humanos , Ligantes , Ftalazinas/química , Piperazinas/química , Complexo de Endopeptidases do Proteassoma/genética , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo
19.
Environ Sci Pollut Res Int ; 27(15): 18025-18028, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32170612

RESUMO

Cadmium (Cd) is one of the toxic metals in the aquatic environment. This study was designed to examine the effects of Cd on the activities of ALT and AST and the concentrations of TP in plasma of freshwater turtle Mauremys reevesii. Experiment turtles were exposed to Cd at the concentration of 15 mg/kg by intraperitoneal injection. The activities of ALT and AST and the concentrations of TP were investigated. Compared with the controls, the activities of ALT and AST in plasma of the treated turtles significantly increased. The concentrations of TP were comparable between the treated turtles and the controls except that were higher than the control turtles in 14 days (14 d) and 56 days (56 d). As a result that turtles exposed to Cd were led to liver function damage.


Assuntos
Tartarugas , Animais , Cádmio , Água Doce
20.
Environ Sci Pollut Res Int ; 27(8): 8431-8438, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31902076

RESUMO

This study investigated the related gene transcription of liver in freshwater turtle Chinemys reevesii exposed to cadmium (Cd). After acclimation, healthy turtles were selected for experiments. They were randomly divided into four experimental groups and each group had 5 animals. The turtles were treated with 0 mg/kg, 7.5 mg/kg, 15 mg/kg, and 30 mg/kg Cd chloride separately by intraperitoneal injection. Liver samples were collected for examination of the transcription of related genes at 2 weeks after Cd exposure. The transcription of mRNA of MT, SOD, CAT, PNKP, and GPX4 genes in turtle liver cells were analyzed. Results showed that Cd promoted MT mRNA transcription in turtle's liver at low dose (7.5 mg/kg) and inhibited MT mRNA transcription in turtle's liver at middle dose (15 mg/kg) and high dose (30 mg/kg). Cd inhibited the transcription of SOD, CAT, and PNKP mRNA in turtle's liver, and the inhibition was obvious at high dose (30 mg/kg). Cd promoted GPX4 mRNA transcription in turtle's liver, especially at low dose (7.5 mg/kg). In conclusion, Cd had different effects on the mRNA transcription of liver cells in the freshwater turtle Chinemys reevesii exposed to Cd.


Assuntos
Cádmio/química , Fígado/fisiologia , Tartarugas , Animais , Cádmio/toxicidade , Água Doce , Transcrição Gênica , Tartarugas/metabolismo , Tartarugas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA