Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Appl Microbiol Biotechnol ; 107(1): 273-286, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36477928

RESUMO

Thermoalkaliphilic laccase (CtLac) from the Caldalkalibacillus thermarum strain TA2.A1 has advantageous properties with potential industrial applications, such as high enzyme activity and stability at 70 °C and pH 8.0. In the present study, a directed evolution approach using a combination of random and site-directed mutagenesis was adopted to enhance the laccase activity of CtLac. Spectrophotometric assay and real-time oxygen measurement techniques were employed to compare and evaluate the enzyme activity among mutants. V243 was targeted for site-directed mutagenesis based on library screening. V243D showed a 25-35% higher laccase activity than wild-type CtLac in the spectrophotometric assay and oxygen consumption measurement results. V243D also showed higher catalytic efficiency than wild-type CtLac with decreased Km and increased kcat values. In addition, V243D enhanced oxidative degradation of the lignin model compound, guaiacylglycerol-ß-guaiacyl ether (GGGE), by 10% and produced a 5-30% increase in high-value aldehydes than wild-type CtLac under optimal enzymatic conditions (i.e., 70 °C and pH 8.0). Considering the lack of protein structural information, we used the directed evolution approach to predict Val at the 243 position of CtLac as one of the critical amino acids contributing to the catalytic efficiency of the enzyme. Moreover, it found that the real-time oxygen measurement technique could overcome the limitations of the spectrophotometric assay, and apply to evaluate oxidase activity in mutagenesis research. KEY POINTS: • CtLac was engineered for enhanced laccase activity through directed evolution approach • V243D showed higher catalytic efficiency (kcat/Km) than wild-type CtLac • V243D produced higher amounts of high-value aldehydes from rice straw than wild-type CtLac.


Assuntos
Lacase , Lignina , Lacase/metabolismo , Lignina/metabolismo , Mutagênese Sítio-Dirigida , Aldeídos , Oxigênio
2.
J Biol Chem ; 297(4): 101143, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34473996

RESUMO

Nitroreductases are emerging as attractive bioremediation enzymes, with substrate promiscuity toward both natural and synthetic compounds. Recently, the nitroreductase NfnB from Sphingopyxis sp. strain HMH exhibited metabolic activity for dinitroaniline herbicides including butralin and pendimethalin, triggering the initial steps of their degradation and detoxification. However, the determinants of the specificity of NfnB for these herbicides are unknown. In this study, we performed structural and biochemical analyses of NfnB to decipher its substrate specificity. The homodimer NfnB is a member of the PnbA subgroup of the nitroreductase family. Each monomer displays a central α + ß fold for the core domain, with a protruding middle region and an extended C-terminal region. The protruding middle region of Val75-Tyr129 represents a structural extension that is a common feature to members of the PnbA subgroup and functions as an opening wall connecting the coenzyme FMN-binding site to the surface, therefore serving as a substrate binding site. We performed mutational, kinetic, and structural analyses of mutant enzymes and found that Tyr88 in the middle region plays a pivotal role in substrate specificity by determining the dimensions of the wall opening. The mutation of Tyr88 to phenylalanine or alanine caused significant changes in substrate selectivity toward bulkier dinitroaniline herbicides such as oryzalin and isopropalin without compromising its activity. These results provide a framework to modify the substrate specificity of nitroreductase in the PnbA subgroup, which has been a challenging issue for its biotechnological and bioremediation applications.


Assuntos
Compostos de Anilina/química , Dinitrobenzenos/química , Herbicidas/química , Nitrorredutases/química , Sphingomonadaceae/enzimologia , Sulfanilamidas/química , Sítios de Ligação , Relação Estrutura-Atividade , Especificidade por Substrato
3.
Microb Ecol ; 79(1): 12-20, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31144003

RESUMO

The coastal zone has distinguishable but tightly connected ecosystems from rivers to the ocean and globally contributes to nutrient cycling including phytoplankton-derived organic matter. Particularly, bacterial contributions to phytoplankton-derived dimethylsulfoniopropionate (DMSP) degradation have been recently evaluated by using advanced sequencing technologies to understand their role in the marine microbial food web. Here, we surveyed the bacterial diversity and community composition under seasonal water mixing in the bay of Gwangyang (GW), a semi-enclosed estuary at the southern tip of the Korea Peninsula. We detected phylogenetic dissimilarities among season-specific habitats in GW and their specific bacterial taxa. Additionally, bacterial contribution to degradation of phytoplankton-derived DMSP from estuarine to coastal waters at euphotic depths in GW was investigated as the presence or absence of DMSP demethylation gene, encoded by dmdA. Among the operational taxonomic units (OTUs) in GW bacterial communities, the most dominant and ubiquitous OTU1 was affiliated with the SAR11 clade (SAR11-OTU). The population dynamics of SAR11-OTU in dmdA-detected GW waters suggest that water mass mixing plays a major role in shaping bacterial communities involved in phytoplankton-derived DMSP demethylation.


Assuntos
Bactérias/metabolismo , Fitoplâncton/metabolismo , Compostos de Sulfônio/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Estuários , Filogenia , Fitoplâncton/química , República da Coreia , Estações do Ano , Água do Mar/química , Água do Mar/microbiologia
4.
Arch Microbiol ; 201(10): 1323-1331, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31297579

RESUMO

The widespread use of metals influenced many researchers to examine the relationship between heavy metal toxicity and bacterial resistance. In this study, we have inoculated heavy metal-contaminated soil from Janghang region of South Korea in the nickel-containing media (20 mM Ni2+) for the enrichment. Among dozens of the colonies acquired from the several transfers and serial dilutions with the same concentrations of Ni, the strain Ni-2 was chosen for further studies. The isolates were identified for their phylogenetic affiliations using 16S rRNA gene analysis. The strain Ni-2 was close to Cupriavidus metallidurans and was found to be resistant to antibiotics of vancomycin, erythromycin, chloramphenicol, ampicillin, gentamicin, streptomycin, and kanamycin by disk diffusion method. Of the isolated strains, Ni-2 was sequenced for the whole genome, since the Ni-resistance seemed to be better than the other strains. From the genome sequence we have found that there was a total of 89 metal-resistance-related genes including 11 Ni-resistance genes, 41 heavy metal (As, Cd, Zn, Hg, Cu, and Co)-resistance genes, 22 cation-efflux genes, 4 metal pumping ATPase genes, and 11 metal transporter genes.


Assuntos
Cupriavidus/efeitos dos fármacos , Cupriavidus/genética , Farmacorresistência Bacteriana/genética , Genoma Bacteriano/genética , Níquel/toxicidade , Antibacterianos/farmacologia , Cupriavidus/classificação , Genômica , Metais Pesados/toxicidade , Filogenia , RNA Ribossômico 16S/genética , República da Coreia
5.
Biosci Biotechnol Biochem ; 83(5): 882-891, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30739541

RESUMO

A novel thermostable carboxylesterase (Est5250) of thermoalkaliphilic bacterium Bacillus thermocloaceae was heterologously expressed in Escherichia coli and its biochemical properties were investigated. Est5250 showed optimum esterase activity at 60 °C and pH 8.0. The enzyme was highly thermostable at 60 °C, interestingly, the thermostability was enhanced in the presence of Ca2+, retaining more than 60% of its original activity after 12 h of pre-incubation. Est5250 was active in the presence of 1% (v/v) of organic solvents and 0.1% (v/v) of non-ionic detergents. The enzyme activity was significantly enhanced up to 167% and 159% in the presence of 2-mercaptoethanol and dithiothreitol, respectively. Est5250 showed high substrate specificity for short-chain p-nitrophenyl-esters. Kinetic constants, Km and kcat, for p-nitrophenyl-acetate were 185.8 µM and 186.6 s-1, respectively. Est5250 showed outstanding thermostability and tolerance to various organic solvents under thermoalkaliphilic conditions, suggesting that it would be a highly suitable biocatalyst for various biotechnological applications. Abbreviations: B. thermocloaceae sp.: Bacillus thermocloaceae; E. coli: Escherichia coli; NP: nitrophenyl; DMSO: dimethyl sulfoxide; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; DMF: dimethyl formamide; EGTA: ethylene glycol-bis(ß-aminoethyl ether)-N,N,N',N'-tetraacetic acid; CTAB: cetrimonium bromide; PMSF: phenylmethylsulfonyl fluoride; DEPC: diethyl pyrocarbonate; 2-ME: 2-mercaptoethanol; DTT: dithiothreitol.


Assuntos
Bacillus/enzimologia , Carboxilesterase/metabolismo , Sequência de Aminoácidos , Carboxilesterase/química , Carboxilesterase/genética , Carboxilesterase/isolamento & purificação , Clonagem Molecular , Detergentes/química , Eletroforese em Gel de Poliacrilamida , Estabilidade Enzimática , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Temperatura
6.
Environ Microbiol ; 20(9): 3132-3140, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29797757

RESUMO

In this minireview, we expand upon traditional microbial source tracking (MST) methods by discussing two recently developed, next-generation-sequencing (NGS)-based MST approaches to identify sources of fecal pollution in recreational waters. One method defines operational taxonomic units (OTUs) that are specific to a fecal source, e.g., humans and animals or shared among multiple fecal sources to determine the magnitude and likely source association of fecal pollution. The other method uses SourceTracker, a program using a Bayesian algorithm, to determine which OTUs have contributed to an environmental community based on the composition of microbial communities in multiple fecal sources. Contemporary NGS-based MST tools offer a promising avenue to rapidly characterize fecal source contributions for water monitoring and remediation efforts at a broader and more efficient scale than previous molecular MST methods. However, both NGS methods require optimized sequence processing methodologies (e.g. quality filtering and clustering algorithms) and are influenced by primer selection for amplicon sequencing. Therefore, care must be taken when extrapolating data or combining datasets. Furthermore, traditional limitations of library-dependent MST methods, including differential decay of source material in environmental waters and spatiotemporal variation in source communities, remain to be fully understood. Nevertheless, increasing use of these methods, as well as expanding fecal taxon libraries representative of source communities, will help improve the accuracy of these methods and provide promising tools for future MST investigations.


Assuntos
Monitoramento Ambiental/métodos , Fezes/microbiologia , Técnicas de Amplificação de Ácido Nucleico/métodos , Microbiologia da Água , Poluição da Água , Animais , Sequenciamento de Nucleotídeos em Larga Escala , Humanos
7.
Environ Sci Technol ; 52(17): 9983-9991, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30111094

RESUMO

We demonstrate adsorption and partial incorporation of arsenic, in its soluble form, either as arsenite or arsenate into lepidocrocite (γ-FeOOH), which was formed through nitrite-driven Fe(II) oxidation by Paracoccus denitrificans under nitrate-reducing conditions. Fe and As K-edge XANES and radial distribution functions of Fourier-transformed EXAFS spectra showed that portions of As were found to be incorporated in the biogenic lepidocrocite, in addition to higher portions of adsorbed As. We suggest that denitrifying bacteria such as Paracoccus denitrificans, studied here, could facilitate decrease of aqueous arsenic As(III) and/or As(V) through indirect Fe(II) oxidation to solid phase iron minerals, here as lepidocrocite, by the denitrification product nitrite in the presence of nitrate, ferrous iron, and arsenic, under certain environmental conditions where these materials could be found, such as in As-contaminated paddy soils and wetlands.


Assuntos
Arsênio , Paracoccus denitrificans , Adsorção , Desnitrificação , Compostos Férricos , Ferro , Oxirredução
8.
Appl Microbiol Biotechnol ; 102(9): 4075-4086, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29552695

RESUMO

In the present study, the gene encoding a multicopper oxidase, more precisely a laccase from the thermoalkaliphilic aerobic bacterium Caldalkalibacillus thermarum strain TA2.A1 (CtLac), was cloned and expressed in Escherichia coli. CtLac is a monomeric protein with a molecular weight of 57 kDa as determined by native polyacrylamide gel electrophoresis. The optimum pH and temperature for 2,6-dimethoxyphenol (2,6-DMP) oxidation were 8.0 and 70 °C, respectively. The kinetic constants Km and kcat for 2,6-DMP were of 200 µM and 23 s-1, respectively. The enzyme was highly thermostable at 80 °C and retained more than 80% of its activity after 24 h preincubation under thermoalkaliphilic conditions. Remarkably, it showed a half-life of about 12 h at 90 °C. The enzyme activity was significantly enhanced by Cu2+ and Mn2+ and was not affected in the presence of most of the other metal ions. CtLac activity was stimulated in the presence of halides, organic solvents, and surfactants. Furthermore, the activity of CtLac on a dimeric lignin model compound, guaiacylglycerol-ß-guaiacyl ether (GGGE) was investigated. Liquid chromatography-mass spectrometry analysis indicated that CtLac catalyzes dimerization of GGGE to form a C5-C5 biphenyl tetramer. The stability and activity of CtLac characterized herein under thermoalkaliphilic conditions make it a highly suitable biocatalyst for various biotechnological and industrial applications.


Assuntos
Bacillaceae/enzimologia , Lacase/metabolismo , Lignina/metabolismo , Bacillaceae/genética , Dimerização , Estabilidade Enzimática , Escherichia coli/genética , Concentração de Íons de Hidrogênio , Microbiologia Industrial , Lacase/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura
9.
J Antimicrob Chemother ; 72(4): 1063-1067, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28087584

RESUMO

Objectives: To examine the presence of pathogenic bacteria carrying New Delhi metallo-ß-lactamase in the environment and to characterize the genome structures of these strains. Methods: Phenotypic screening of antimicrobial susceptibility and WGS were conducted on three Klebsiella variicola strains possessing NDM-9 isolated from an urban river. Results: Three carbapenem-resistant K. variicola isolated from Gwangju tributary were found to possess bla NDM-9 genes. Antimicrobial susceptibility testing indicated resistance of these strains to aminoglycosides, carbapenems, cephems, folate pathway inhibitors, fosfomycin and penicillins, but susceptibility to fluoroquinolones, phenicols, tetracyclines and miscellaneous agents. WGS revealed that the 108 kb IncFII(Y)-like plasmids carry bla NDM-9 sandwiched between IS 15 for the GJ1 strain, IS 26 for the GJ2 strain, IS 15D1 for the GJ3 strain and IS Vsa3 , and further bracketed by IS 26 and Tn AS3 along with the mercury resistance operon upstream and the class 1 integron composed of gene cassettes of aadA2 , dfrA12 and sul1 downstream. An aph(3')-Ia gene conferring resistance to aminoglycosides is located after the integrons. Chromosomally encoded bla LEN-13 , fosA , aqxA and oqxB genes, as well as plasmid-mediated bla TEM-1B and bla CTX-M-65 encoding ESBL, ant(3')-Ia and mph (A) genes, were also identified. Conclusions: The findings of the present study provide us with the information that NDM-9 has been spreading into the environment. Dissemination of NDM-9 in the environment has raised a health risk alarm as this variant of NDM carries MDR genes with highly transferable mobile genetic elements, increasing the possibility of resistance gene transfer among microorganisms in the environment.


Assuntos
Klebsiella/enzimologia , Klebsiella/isolamento & purificação , Rios/microbiologia , beta-Lactamases/análise , beta-Lactamases/genética , Antibacterianos/farmacologia , Cidades , Genes Bacterianos , Genoma Bacteriano , Sequências Repetitivas Dispersas , Klebsiella/genética , Testes de Sensibilidade Microbiana , República da Coreia , Análise de Sequência de DNA
10.
Appl Environ Microbiol ; 83(3)2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-27836844

RESUMO

Vibrio species are widely distributed in warm estuarine and coastal environments, and they can infect humans through the consumption of raw and mishandled contaminated seafood. In this study, we aimed to isolate and observe the distribution of enteropathogenic Vibrio spp. from environments of the southern coast of South Korea over a season cycle. A total of 10,983 isolates of Vibrio spp. were obtained from tidal water and mud samples over a 1-year period from five sampling sites along the southwest coast of South Korea. We found that Vibrio alginolyticus (n = 6,262) and Vibrio parahaemolyticus (n = 1,757) were ubiquitous in both tidal water and mud year round, whereas Vibrio cholerae (n = 24) and Vibrio vulnificus (n = 130) were seasonally specific to summer. While all V. cholerae isolates were nontoxigenic (non-O1 and non-O139), more than 88% of V. vulnificus isolates possessed the virulence factor elastolytic protease (encoded by vvp). Interestingly, V. parahaemolyticus, which was omnipresent in all seasons, contained the virulence factors thermostable direct hemolysin (encoded by tdh) and thermostable direct hemolysin-related hemolysin (encoded by trh) in larger amounts in June (29 trh-positive strains) and September (14 tdh-, 36 trh-, and 12 tdh- and trh-positive strains) than in December (4 trh-positive strains) and February (3 tdh-positive strains), and virulence factors were absent from isolates detected in April. To understand why virulence factors were detected only in the warm season and were absent in the cold season although the locations are static, long-term monitoring and particularly seasonal study are necessary. IMPORTANCE: The presence of enteropathogenic Vibrio species (Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus), which cause acute diarrheal infection, septicemia, and wound infections upon ingestion through food and water, is usually associated with temperature. The World Health Organization (WHO) has estimated that there are 1.4 to 4.3 million cases and 28,000 to 142,000 deaths per year worldwide caused by cholera disease. In South Korea alone, consumption is as much as 52.4 kg of fish and shellfish per year per capita. Our findings suggested that seasonally specific acceleration of these possible pathogenic Vibrio spp. may threaten seafood safety and increase the risk of illness in South Korea, where local people consume raw fish during warmer months.


Assuntos
Sedimentos Geológicos/microbiologia , Água do Mar/microbiologia , Vibrio/fisiologia , Genótipo , República da Coreia , Estações do Ano , Vibrio/genética , Vibrio/patogenicidade , Virulência
11.
Environ Microbiol ; 18(2): 668-78, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26411339

RESUMO

It has been known that continental shelves around the Arctic Ocean play a major role in the ventilation of the deep basins as a consequence of shelf-basin exchange. In the present study, we found that bacterial assemblage of the surface sediment was different from that of seawater while seawater harboured local bacterial assemblages in response to the Arctic hydrography. This finding suggests that the Arctic seafloor sediments may have distinctive bacterial biogeography. Moreover, the distribution of bacterial assemblages and physicochemical properties in surface sediments changed gradually from the Arctic continental shelf to deep-sea basin. Based on the results, bacterial biogeography in the Arctic seafloor sediments may be influenced by winnowing and re-deposition of surface sediments through the sediment gravity flow. The present study offers a deeper understanding of shelf convection and its role for the construction of bacterial assemblages in the Arctic Ocean.


Assuntos
Bactérias/classificação , Sedimentos Geológicos/microbiologia , Água do Mar/microbiologia , Regiões Árticas , Bactérias/metabolismo , Biodiversidade , Dados de Sequência Molecular , Oceanos e Mares
12.
Biosci Biotechnol Biochem ; 80(8): 1478-83, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27108675

RESUMO

Although biological synthesis methods for the production of gold structures by microorganisms, plant extracts, proteins, and peptide have recently been introduced, there have been few reports pertaining to controlling their size and morphology. The gold ion and peptide concentrations affected on the size and uniformity of gold plates by a gold-binding peptide Midas-11. The higher concentration of gold ions produced a larger size of gold structures reached 125.5 µm, but an increased amount of Midas-11 produced a smaller size of gold platelets and increased the yield percentage of polygonal gold particles rather than platelets. The mechanisms governing factors controlling the production of gold structures were primarily related to nucleation and growth. These results indicate that the synthesis of gold architectures can be controlled by newly isolated and substituted peptides under different reaction conditions.


Assuntos
Materiais Biomiméticos/química , Cloretos/química , Compostos de Ouro/química , Ouro/química , Peptídeos/química , Concentração de Íons de Hidrogênio , Íons , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Ligação Proteica
13.
Appl Microbiol Biotechnol ; 99(22): 9473-81, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26059194

RESUMO

The enzyme ferulic acid decarboxylase (FADase) from Enterobacter sp. Px6-4 catalyzes the decarboxylation reaction of lignin monomers and phenolic compounds such as p-coumaric acid, caffeic acid, and ferulic acid into their corresponding 4-vinyl derivatives, that is, 4-vinylphenol, 4-vinylcatechol, and 4-vinylguaiacol, respectively. Among various ferulic acid decarboxylase enzymes, we chose the FADase from Enterobacter sp. Px6-4, whose crystal structure is known, and produced mutants to enhance its catalytic activity by random and site-directed mutagenesis. After three rounds of sequential mutations, FADase(F95L/D112N/V151I) showed approximately 34-fold higher catalytic activity than wild-type for the production of 4-vinylguaiacol from ferulic acid. Docking analyses suggested that the increased activity of FADase(F95L/D112N/V151I) could be due to formation of compact active site compared with that of the wild-type FADase. Considering the amount of phenolic compounds such as lignin monomers in the biomass components, successfully bioengineered FADase(F95L/D112N/V151I) from Enterobacter sp. Px6-4 could provide an ecofriendly biocatalytic tool for producing diverse styrene derivatives from biomass.


Assuntos
Carboxiliases/genética , Carboxiliases/metabolismo , Enterobacter/enzimologia , Enterobacter/genética , Biocatálise , Biotransformação , Domínio Catalítico , Ácidos Cumáricos/metabolismo , Descarboxilação , Guaiacol/análogos & derivados , Guaiacol/metabolismo , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Mutação , Fenóis/metabolismo , Propionatos
14.
J Dairy Sci ; 98(6): 3568-76, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25864056

RESUMO

We investigated the effect of consuming probiotic fermented milk (PFM) on the microbial community structure in the human intestinal tract by using high-throughput barcoded pyrosequencing. Six healthy adults ingested 2 servings of PFM daily for 3 wk, and their fecal microbiota were analyzed before and after 3 wk of PFM ingestion period and for another 3 wk following the termination of PFM ingestion (the noningestion period). Fecal microbial communities were characterized by sequencing of the V1-V3 hypervariable regions of the 16S rRNA gene. All subjects showed a similar pattern of microbiota at the phylum level, where the relative abundance of Bacteriodetes species increased during the PFM ingestion period and decreased during the noningestion period. The increase in Bacteroidetes was found to be due to an increase in members of the families Bacteroidaceae or Prevotellaceae. In contrast to PFM-induced adaptation at the phylum level, the taxonomic composition at the genus level showed a considerable alteration in fecal microbiota induced by PFM ingestion. As revealed by analysis of operational taxonomic units (OTU), the numbers of shared OTU were low among the 3 different treatments (before, during, and after PFM ingestion), but the abundance of the shared OTU was relatively high, indicating that the majority (>77.8%) of total microbiota was maintained by shared OTU during PFM ingestion and after its termination. Our results suggest that PFM consumption could alter microbial community structure in the gastrointestinal tract of adult humans while maintaining the stability of microbiota.


Assuntos
Produtos Fermentados do Leite/química , Trato Gastrointestinal/microbiologia , Probióticos , Adulto , Animais , Bactérias/classificação , Bactérias/isolamento & purificação , Fezes/química , Microbioma Gastrointestinal , Humanos , Mucosa Intestinal/metabolismo , RNA Ribossômico 16S/genética
15.
Environ Sci Technol ; 48(24): 14599-606, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25393562

RESUMO

Industrial effluents constitute a major source of metal pollution of aquatic bodies. Moreover, due to their environmental persistence, toxic metal pollution is of special concern. Microbial reduction is considered a promising strategy for toxic metal removal among the several methods available for metal remediation. Here, we describe the coremediation of toxic Cr(VI) and Te(IV) by the dissimilatory metal reducing bacterium-Shewanella oneidensis MR-1. In the presence of both Cr(VI) and Te(IV), S. oneidensis MR-1 reduced Cr(VI) to the less toxic Cr(III) form, but not Te(IV) to Te(0). The reduced Cr(III) ions complexed rapidly with Te(IV) ions and were precipitated from the cell cultures. Electron microscopic analyses revealed that the Cr-Te complexed nanoparticles localized on the bacterial outer membranes. K-edge X-ray absorption spectrometric analyses demonstrated that Cr(III) produced by S. oneidensis MR-1 was rapidly complexed with Te(IV) ions, followed by formation of amorphous Cr(III)-Te(IV) nanoparticles on the cell surface. Our results could be applied for the simultaneous sequestration and detoxification of both Cr(VI) and Te(IV) as well as for the preparation of nanomaterials through environmental friendly processes.


Assuntos
Cromo/metabolismo , Nanopartículas Metálicas , Shewanella , Telúrio/metabolismo , Biodegradação Ambiental , Cromo/química , Microscopia Eletrônica , Oxirredução , Shewanella/metabolismo , Poluentes Químicos da Água/metabolismo , Espectroscopia por Absorção de Raios X
16.
Chemosphere ; 357: 141912, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582166

RESUMO

The efficiency of the Fenton reaction is markedly contingent upon the operational pH related to iron solubility. Therefore, a heterogeneous Fenton reaction has been developed to function at neutral pH. In the present study, the Bio-Fenton reaction was carried out using magnetite (Fe(II)Fe(III)2O4) and H2O2 generated by a newly isolated H2O2-producing bacterium, Desemzia sp. strain C1 at pH 6.8 to degrade chloroacetanilide herbicides. The optimal conditions for an efficient Bio-Fenton reaction were 10 mM of lactate, 0.5% (w/v) of magnetite, and resting-cells (O.D.600 = 1) of strain C1. During the Bio-Fenton reaction, 1.8-2.0 mM of H2O2 was generated by strain C1 and promptly consumed by the Fenton reaction with magnetite, maintaining stable pH conditions. Approximately, 40-50% of the herbicides underwent oxidation through non-specific reactions of •OH, leading to dealkylation, dechlorination, and hydroxylation via hydrogen atom abstraction. These findings will contribute to advancing the Bio-Fenton system for non-specific oxidative degradation of diverse organic pollutants under in-situ environmental conditions with bacteria producing high amount of H2O2 and magnetite under a neutral pH condition.


Assuntos
Acetamidas , Biodegradação Ambiental , Óxido Ferroso-Férrico , Herbicidas , Peróxido de Hidrogênio , Ferro , Herbicidas/metabolismo , Herbicidas/química , Peróxido de Hidrogênio/metabolismo , Óxido Ferroso-Férrico/metabolismo , Óxido Ferroso-Férrico/química , Ferro/metabolismo , Ferro/química , Acetamidas/metabolismo , Acetamidas/química , Oxirredução , Concentração de Íons de Hidrogênio
17.
J Microbiol Biotechnol ; 34(3): 570-579, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38213271

RESUMO

Root-nodule nitrogen-fixing bacteria are known for being specific to particular legumes. This study isolated the endophytic root-nodule bacteria from the nodules of legumes and examined them to determine whether they could be used to promote the formation of nodules in other legumes. Forty-six isolates were collected from five leguminous plants and screened for housekeeping (16S rRNA), nitrogen fixation (nifH), and nodulation (nodC) genes. Based on the 16S rRNA gene sequencing and phylogenetic analysis, the bacterial isolates WC15, WC16, WC24, and GM5 were identified as Rhizobium, Sphingomonas, Methylobacterium, and Bradyrhizobium, respectively. The four isolates were found to have the nifH gene, and the study confirmed that one isolate (GM5) had both the nifH and nodC genes. The Salkowski method was used to measure the isolated bacteria for their capacity to produce phytohormone indole acetic acid (IAA). Additional experiments were performed to examine the effect of the isolated bacteria on root morphology and nodulation. Among the four tested isolates, both WC24 and GM5 induced nodulation in Glycine max. The gene expression studies revealed that GM5 had a higher expression of the nifH gene. The existence and expression of the nitrogen-fixing genes implied that the tested strain had the ability to fix the atmospheric nitrogen. These findings demonstrated that a nitrogen-fixing bacterium, Methylobacterium (WC24), isolated from a Trifolium repens, induced the formation of root nodules in non-host leguminous plants (Glycine max). This suggested the potential application of these rhizobia as biofertilizer. Further studies are required to verify the N2-fixing efficiency of the isolates.


Assuntos
Fabaceae , Bactérias Fixadoras de Nitrogênio , Rhizobium , Fabaceae/microbiologia , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Bactérias Fixadoras de Nitrogênio/genética , Bactérias Fixadoras de Nitrogênio/metabolismo , Leguminas , Filogenia , RNA Ribossômico 16S/genética , Simbiose/genética , Fixação de Nitrogênio , Glycine max , Bactérias/genética , Rhizobium/genética , Rhizobium/metabolismo , Verduras , Nitrogênio/metabolismo
18.
Chemosphere ; 353: 141554, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430940

RESUMO

Microbial biodegradation of commercially available poly(butylene adipate-co-terephthalate)-polylactic acid-thermoplastic starch based bio-plastic has been pursued at high temperatures exceeding 55 °C. Herein, we first reported three newly isolated fungal strains from farmland soil samples of Republic of Korea namely, Pyrenochaetopsis sp. strain K2, Staphylotrichum sp. S2-1, and Humicola sp. strain S2-3 were capable of degrading a commercial bio-plastic film with degradation rates of 9.5, 8.6, and 12.2%, respectively after 3 months incubation at ambient conditions. Scanning electron microscopy (SEM) analyses showed that bio-plastic film was extensively fragmented with severe cracking on the surface structure after incubation with isolated fungal strains. X-ray diffraction (XRD) analysis also revealed that high crystallinity of the commercial bio-plastic film was significantly decreased after degradation by fungal strains. Liquid chromatography-mass spectrometry (LC-MS) analyses of the fungal culture supernatants containing the bio-plastic film showed the peaks for adipic acid, terephthalic acid (TPA), and terephthalate-butylene (TB) as major metabolites, suggesting cleavage of ester bonds and accumulation of TPA. Furthermore, a consortium of fungal strain K2 with TPA degrading bacterium Pigmentiphaga sp. strain P3-2 isolated from the same sampling site exhibited faster degradation rate of the bio-plastic film within 1 month of incubation with achieving complete biodegradation of accumulated TPA. We assume that the extracellular lipase activity presented in the fungal cultures could hydrolyze the ester bonds of PBAT component of bio-plastic film. Taken together, the fungal and bacterial consortium investigated herein could be beneficial for efficient biodegradation of the commercial bio-plastic film at ambient conditions.


Assuntos
Alcenos , Ácidos Ftálicos , Poliésteres , Amido , Amido/química , Poliésteres/química , Adipatos , Fungos , Ésteres
19.
Environ Sci Technol ; 47(15): 8709-15, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23802169

RESUMO

The reduction of tellurite (Te(IV)) by dissimilatory metal reducing bacterium, Shewanella oneidensis MR-1, was promoted in the presence of Fe(III) in comparison with Te(IV) bioreduction in the absence of Fe(III). Electron microscopic analyses revealed that iron promoted Te(IV) reduction led to form exclusively extracellular crystalline Te(0) nanorods, as compared to the mostly intracellular formation of Te(0) nanorods in the absence of Fe(III). The Te K-edge X-ray absorption spectrometric analyses demonstrated that S. oneidensis MR-1 in the presence of Fe(III) reduced Te(IV) to less harmful metallic Te(0) nanorods through the precipitation of tellurite (Te(IV)Ox) complex by the bacterial respiration of Fe(III) to Fe(II) under anaerobic conditions. However, Fe(II) ion itself was only able to precipitate the solid tellurite (Te(IV)Ox) complex from the Te(IV) solution, which was not further reduced to Te(0). The results clearly indicated that bacterial S. oneidensis MR-1 plays important roles in the reduction and crystallization of Te(0) nanorods by as yet undetermined biochemical mechanisms. As compared to the slow bacterial Te(IV) reduction in the absence of Fe(III), the rapid reduction of Te(IV) to Te(0) by the concerted biogeochemical reaction between Fe(II) and S. oneidensis MR-1 could be applied for the sequestration and detoxification of Te(IV) in the environments as well as for the preparation of extracellular Te(0) nanorod structures.


Assuntos
Ferro/química , Nanotubos , Shewanella/metabolismo , Telúrio/química , Microscopia Eletrônica de Transmissão , Oxirredução , Espectroscopia por Absorção de Raios X
20.
Environ Sci Technol ; 47(15): 8616-23, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23802758

RESUMO

Arsenic immobilization and release in the environment is significantly influenced by bacterial oxidation and reduction of arsenic and arsenic-bearing minerals. In this study, we tested three iron-reducing bacteria, Shewanella oneidensis MR-1, Shewanella sp. HN-41, and Shewanella putrefaciens 200, which have diverse arsenate-reducing activities with regard to reduction of an As-bearing ferrihydrite slurry. In the cultures of S. oneidensis MR-1 and Shewanella sp. HN-41, which are not capable of respiratory reduction of As(V) to As(III), arsenic was maintained predominantly in its pentavalent form, existing in particulate poorly crystalline As-bearing ferrihydrite and formed small quantities of a stable ferrous arsenate [Fe3(AsO4)2] precipitate. However, in the culture of the As(V) reducer, S. putrefaciens 200, As(V) was reduced to As(III) and a small fraction of As-bearing ferrihydrite was transformed into ribbon-shaped siderite that subsequently re-released arsenic into the liquid phase. Our results indicated that release of arsenic and formation of diverse secondary nanoscale Fe-As minerals are specifically closely related to the arsenic-reducing abilities of different bacteria. Therefore, bacterial arsenic reduction appears to significantly influence As mobilization in soils, minerals, and other Fe-rich environments.


Assuntos
Arsênio/metabolismo , Compostos Férricos/metabolismo , Ferro/metabolismo , Shewanella/metabolismo , Biodegradação Ambiental , Microscopia Eletrônica de Transmissão , Oxirredução , Espectroscopia por Absorção de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA