Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-27207907

RESUMO

BACKGROUND: Electroconvulsive seizure treatment is a fast-acting antidepressant therapy that evokes rapid transcriptional, neurogenic, and behavioral changes. Epigenetic mechanisms contribute to altered gene regulation, which underlies the neurogenic and behavioral effects of electroconvulsive seizure. We hypothesized that electroconvulsive seizure may modulate the expression of epigenetic machinery, thus establishing potential alterations in the epigenetic landscape. METHODS: We examined the influence of acute and chronic electroconvulsive seizure on the gene expression of histone modifiers, namely histone acetyltransferases, histone deacetylases, histone methyltransferases, and histone (lysine) demethylases as well as DNA modifying enzymes, including DNA methyltransferases, DNA demethylases, and methyl-CpG-binding proteins in the hippocampi of adult male Wistar rats using quantitative real time-PCR analysis. Further, we examined the influence of acute and chronic electroconvulsive seizure on global and residue-specific histone acetylation and methylation levels within the hippocampus, a brain region implicated in the cellular and behavioral effects of electroconvulsive seizure. RESULTS: Acute and chronic electroconvulsive seizure induced a primarily unique, and in certain cases bidirectional, regulation of histone and DNA modifiers, and methyl-CpG-binding proteins, with an overlapping pattern of gene regulation restricted to Sirt4, Mll3, Jmjd3, Gadd45b, Tet2, and Tet3. Global histone acetylation and methylation levels were predominantly unchanged, with the exception of a significant decline in H3K9 acetylation in the hippocampus following chronic electroconvulsive seizure. CONCLUSIONS: Electroconvulsive seizure treatment evokes the transcriptional regulation of several histone and DNA modifiers, and methyl-CpG-binding proteins within the hippocampus, with a predominantly distinct pattern of regulation induced by acute and chronic electroconvulsive seizure.

2.
Artigo em Inglês | MEDLINE | ID: mdl-25784603

RESUMO

Adjunct α2-adrenoceptor antagonism is a potential strategy to accelerate the behavioral effects of antidepressants. Co-administration of the α2-adrenoceptor antagonist yohimbine hastens the behavioral and neurogenic effects of the antidepressant imipramine. We examined the transcriptional targets of short duration (7days), combination treatment of yohimbine and imipramine (Y+I) within the adult rat hippocampus. Using microarray and qPCR analysis we observed functional enrichment of genes involved in intracellular signaling cascades, plasma membrane, cellular metal ion homeostasis, multicellular stress responses and neuropeptide signaling pathways in the Y+I transcriptome. We noted reduced expression of the α2A-adrenoceptor (Adra2a), serotonin 5HT2C receptor (Htr2c) and the somatostatin receptor 1 (Sstr1), which modulate antidepressant action. Further, we noted a regulation of signaling pathway genes like inositol monophosphatase 2 (Impa2), iodothyronine deiodinase 3 (Dio3), regulator of G-protein signaling 4 (Rgs4), alkaline ceramidase 2 (Acer2), doublecortin-like kinase 2 (Dclk2), nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (Nfkbia) and serum/glucocorticoid-regulated kinase 1 (Sgk1), several of which are implicated in the pathophysiology of mood disorders. Comparative analysis revealed an overlap in the hippocampal regulation of Acer2, Nfkbia, Sgk1 and Impa2 between Y+I treatment, the fast-acting electroconvulsive seizure (ECS) paradigm, and the slow-onset chronic (21days) imipramine treatment. Further, Y+I treatment enhanced the quiescent neural progenitor pool in the hippocampal neurogenic niche similar to ECS, and distinct from chronic imipramine treatment. Taken together, our results provide insight into the molecular and cellular targets of short duration Y+I treatment, and identify potential leads for the development of rapid-action antidepressants.


Assuntos
Anticonvulsivantes/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Hipocampo , Imipramina/farmacologia , Neurogênese/efeitos dos fármacos , Ioimbina/farmacologia , Animais , Contagem de Células , Proteína Duplacortina , Combinação de Medicamentos , Eletrochoque/métodos , Proteína Glial Fibrilar Ácida/metabolismo , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Nestina/genética , Nestina/metabolismo , Ratos , Ratos Wistar , Receptor 5-HT2C de Serotonina/genética , Receptor 5-HT2C de Serotonina/metabolismo , Receptores Adrenérgicos alfa 2/genética , Receptores Adrenérgicos alfa 2/metabolismo , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA