Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
RSC Adv ; 12(39): 25143-25153, 2022 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-36199323

RESUMO

A series of small pure Au m (2 ≥ m ≤ 7) and copper-doped Au m-x Cu x clusters was evaluated by density functional theory (DFT) at the CAM-B3LYP/LANL2DZ level for their geometric, electronic, and nonlinear optical (NLO) properties. The charge transfer for the Au cluster significantly improved by reducing the HOMO-LUMO energy gap from 3.67 eV to 0.91 eV after doping with Cu atoms. The doping of Cu also showed noteworthy impacts on other optical and NLO properties, including a decrease in the excitation energy and increase in the dipole moment and oscillator strength. Furthermore, changes in the linear isotropic and anisotropic polarizabilities (α iso and α aniso) and first and second NLO hyperpolarizabilities (ß static, γ static) were also observed in the pure and Cu-doped clusters, which enhanced the NLO response. The nonlinear optical properties of the clusters were evaluated by calculating the static and frequency dependent second- and third-order NLO polarizabilities at 1064 nm wavelength. Among all the doped structures, the Au3Cu1 cluster showed the largest static first hyperpolarizability of ß (total) = 4.73 × 103 au, while the Au1Cu6 cluster showed frequency dependent first hyperpolarizability of ß (-2w;w,w) = 1.26 × 106 au. Besides this, large static and frequency-dependent second hyperpolarizability values of 6.30 × 105 au and 1.05 × 10 au were exhibited by Cu7 and Au1Cu6, respectively. This study offers an effective approach to design high-performance NLO materials utilizing mixed metal clusters which might have broad applications in the fields of optoelectronics and electronics.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 235: 118303, 2020 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-32276226

RESUMO

Different plants can be used to prepare nanoparticles. This is termed as green technology. It is one of the best ecofriendly and low-cost method for the preparation of nanoparticles which has no harmful effects. PbO nanoparticles were prepared by green method using leaf extract of Datura Sternum plants. The preparation of Lead oxide was confirmed by color change from colorless to yellowish brown. UV-Visible peak obtained at 250 nm and XRD study clarified the formation of PbO NPs. These PbO nanoparticles were then applied for the preparation of Nano Composite Polymer Membranes (nCPMs). PbO-PVC nCPMs were prepared based on polyvinyl chloride (PVC) polymer and PbO filler with the help of solution casting method, using cyclohexanone as a solvent. Different percentage (5-35%) of filler was used. The physiochemical parameters studied were viscosity, water uptake (WU), perpendicular swelling (DT) in deionized water, density, porosity (ε), morphology, ion adsorption capacity (IAC) and electrical conductivity (σ). The values of all these parameters except viscosity and conductivity were increased on increasing filler percentage. Viscosity of the nCPMs solution was decreased from 171 to 46.21. The conductivity of nCPMs was first increased upto 25% filler and then decreased. The deformation in PVC structure was increased on enhancing PbO amount. The values of Density, porosity, water uptake, DT and IAC were found in range 1.15-5.02, 0.50-0.87, 72.01-141.30, 0.012-0.11, and 3.13 × 107-8.60 × 107 respectively.


Assuntos
Datura/química , Química Verde/métodos , Chumbo/química , Nanopartículas Metálicas/química , Nanocompostos/química , Óxidos/química , Cloreto de Polivinila/química , Adsorção , Cicloexanonas/química , Condutividade Elétrica , Íons , Membranas Artificiais , Nanopartículas/química , Porosidade , Espectrofotometria Ultravioleta , Viscosidade , Poluentes Químicos da Água/química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA