Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 85(23): 12529-36, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21917946

RESUMO

Gammaretrovirus receptors have been suggested to contain the necessary determinants to mediate virus binding and entry. Here, we show that murine NIH 3T3 and baby hamster kidney (BHK) cells overexpressing receptors for subgroup A, B, and C feline leukemia viruses (FeLVs) are weakly susceptible (10(1) to 10(2) CFU/ml) to FeLV pseudotype viruses containing murine leukemia virus (MLV) core (Gag-Pol) proteins, whereas FeLV receptor-expressing murine Mus dunni tail fibroblast (MDTF) cells are highly susceptible (10(4) to 10(6) CFU/ml). However, NIH 3T3 cells expressing the FeLV subgroup B receptor PiT1 are highly susceptible to gibbon ape leukemia virus pseudotype virus, which differs from the FeLV pseudotype viruses only in the envelope protein. FeLV resistance is not caused by a defect in envelope binding, low receptor expression levels, or N-linked glycosylation. Resistance is not alleviated by substitution of the MLV core in the FeLV pseudotype virus with FeLV core proteins. Interestingly, FeLV resistance is alleviated by fusion of receptor-expressing NIH 3T3 and BHK cells with MDTF or human TE671 cells, suggesting the absence of an additional cellular component in NIH 3T3 and BHK cells that is required for FeLV infection. The putative FeLV-specific cellular component is not a secreted factor, as MDTF conditioned medium does not alleviate the block to FeLV infection. Together, our findings suggest that FeLV infection requires an additional envelope-dependent cellular component that is absent in NIH 3T3 and BHK cells but that is present in MDTF and TE671 cells.


Assuntos
Vírus da Leucemia Felina/patogenicidade , Leucemia Felina/metabolismo , Leucemia Felina/virologia , Receptores Virais/metabolismo , Proteínas do Core Viral/metabolismo , Proteínas do Envelope Viral/metabolismo , Animais , Gatos , Células Cultivadas , Cricetinae , Citometria de Fluxo , Glicosilação/efeitos dos fármacos , Humanos , Rim/citologia , Rim/metabolismo , Rim/virologia , Leucemia Felina/patologia , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Células NIH 3T3 , Ligação Proteica , Fator de Transcrição Pit-1/metabolismo , Vírion/fisiologia , Ligação Viral
2.
BMC Mol Cell Biol ; 23(1): 10, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35189816

RESUMO

BACKGROUND: Swi6 acts as a transcription factor in budding yeast, functioning in two different heterodimeric complexes, SBF and MBF, that activate the expression of distinct but overlapping sets of genes. Swi6 undergoes regulated changes in nucleocytoplasmic localization throughout the cell cycle that correlate with changes in gene expression. This study investigates how nucleocytoplasmic transport by multiple transport factors may influence specific Swi6 activities. RESULTS: Here we show that the exportin Crm1 is important for Swi6 nuclear export and activity. Loss of a putative Crm1 NES or inhibition of Crm1 activity results in changes in nucleocytoplasmic Swi6 localization. Alteration of the Crm1 NES in Swi6 results in decreased MBF-mediated gene expression, but does not affect SBF reporter expression, suggesting that export of Swi6 by Crm1 regulates a subset of Swi6 transcription activation activity. Finally, alteration of the putative Crm1 NES in Swi6 results in cells that are larger than wild type, and this increase in cell size is exacerbated by deletion of Msn5. CONCLUSIONS: These data provide evidence that Swi6 has at least two different exportins, Crm1 and Msn5, each of which interacts with a distinct nuclear export signal. We identify a putative nuclear export signal for Crm1 within Swi6, and observe that export by Crm1 or Msn5 independently influences Swi6-regulated expression of a different subset of Swi6-controlled genes. These findings provide new insights into the complex regulation of Swi6 transcription activation activity and the role of nucleocytoplasmic shuttling in regulated gene expression.


Assuntos
Carioferinas , Proteínas de Saccharomyces cerevisiae , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Carioferinas/genética , Carioferinas/metabolismo , Receptores Citoplasmáticos e Nucleares , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ativação Transcricional , Proteína Exportina 1
3.
J Virol ; 83(13): 6706-16, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19369334

RESUMO

The pathogenic subgroup C feline leukemia virus (FeLV-C) arises in infected cats as a result of mutations in the envelope (Env) of the subgroup A FeLV (FeLV-A). To better understand emergence of FeLV-C and potential FeLV intermediates that may arise, we characterized FeLV Env sequences from the primary FY981 FeLV isolate previously derived from an anemic cat. Here, we report the characterization of the novel FY981 FeLV Env that is highly related to FeLV-A Env but whose variable region A (VRA) receptor recognition sequence partially resembles the VRA sequence from the prototypical FeLV-C/Sarma Env. Pseudotype viruses bearing FY981 Env were capable of infecting feline, human, and guinea pig cells, suggestive of a subgroup C phenotype, but also infected porcine ST-IOWA cells that are normally resistant to FeLV-C and to FeLV-A. Analysis of the host receptor used by FY981 suggests that FY981 can use both the FeLV-C receptor FLVCR1 and the feline FeLV-A receptor THTR1 for infection. However, our results suggest that FY981 infection of ST-IOWA cells is not mediated by the porcine homologue of FLVCR1 and THTR1 but by an alternative receptor, which we have now identified as the FLVCR1-related protein FLVCR2. Together, our results suggest that FY981 FeLV uses FLVCR1, FLVCR2, and THTR1 as receptors. Our findings suggest the possibility that pathogenic FeLV-C arises in FeLV-infected cats through intermediates that are multitropic in their receptor use.


Assuntos
Vírus da Leucemia Felina/genética , Proteínas de Membrana Transportadoras/metabolismo , Receptores Virais/metabolismo , Proteínas do Envelope Viral/genética , Sequência de Aminoácidos , Animais , Gatos , Linhagem Celular , Cricetinae , Humanos , Vírus da Leucemia Felina/isolamento & purificação , Vírus da Leucemia Felina/patogenicidade , Camundongos , Dados de Sequência Molecular , Alinhamento de Sequência , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA