Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
1.
Plant Cell ; 34(6): 2150-2173, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35218346

RESUMO

In eukaryotes, clathrin-coated vesicles (CCVs) facilitate the internalization of material from the cell surface as well as the movement of cargo in post-Golgi trafficking pathways. This diversity of functions is partially provided by multiple monomeric and multimeric clathrin adaptor complexes that provide compartment and cargo selectivity. The adaptor-protein assembly polypeptide-1 (AP-1) complex operates as part of the secretory pathway at the trans-Golgi network (TGN), while the AP-2 complex and the TPLATE complex jointly operate at the plasma membrane to execute clathrin-mediated endocytosis. Key to our further understanding of clathrin-mediated trafficking in plants will be the comprehensive identification and characterization of the network of evolutionarily conserved and plant-specific core and accessory machinery involved in the formation and targeting of CCVs. To facilitate these studies, we have analyzed the proteome of enriched TGN/early endosome-derived and endocytic CCVs isolated from dividing and expanding suspension-cultured Arabidopsis (Arabidopsis thaliana) cells. Tandem mass spectrometry analysis results were validated by differential chemical labeling experiments to identify proteins co-enriching with CCVs. Proteins enriched in CCVs included previously characterized CCV components and cargos such as the vacuolar sorting receptors in addition to conserved and plant-specific components whose function in clathrin-mediated trafficking has not been previously defined. Notably, in addition to AP-1 and AP-2, all subunits of the AP-4 complex, but not AP-3 or AP-5, were found to be in high abundance in the CCV proteome. The association of AP-4 with suspension-cultured Arabidopsis CCVs is further supported via additional biochemical data.


Assuntos
Arabidopsis , Vesículas Revestidas por Clatrina , Arabidopsis/genética , Arabidopsis/metabolismo , Clatrina/metabolismo , Vesículas Revestidas por Clatrina/química , Vesículas Revestidas por Clatrina/metabolismo , Endocitose , Proteoma/metabolismo , Proteômica , Fator de Transcrição AP-1/análise , Fator de Transcrição AP-1/metabolismo
2.
Proc Natl Acad Sci U S A ; 119(11): e2123353119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35275795

RESUMO

SignificanceAlthough plastid division is critical for plant development, how components of the plastid division machinery (PDM) are imported into plastids remains unexplored. A forward genetic screen to identify suppressors of a crumpled leaf (crl) mutant deficient in plastid division led us to find dominant gain-of-function (GF) mutations in TIC236, which significantly increases the import of PDM components and completely rescues crl phenotypes. The defective plastid division phenotypes in crl and tic236-knockdown mutants and CRL-TIC236 association in a functional complex indicate that the CRL-TIC236 module is vital for plastid division. Hence, we report the first GF translocon mutants and unveil CRL as a novel functional partner of TIC236 for PDM import.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Divisão Celular , Proteínas de Cloroplastos , Proteínas de Membrana Transportadoras , Plastídeos , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Mutação com Ganho de Função , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Plastídeos/genética , Plastídeos/metabolismo , Transporte Proteico
3.
BMC Plant Biol ; 24(1): 367, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38711041

RESUMO

BACKGROUND: The formation of shoots plays a pivotal role in plant organogenesis and productivity. Despite its significance, the underlying molecular mechanism of de novo regeneration has not been extensively elucidated in Capsicum annuum 'Dempsey', a bell pepper cultivar. To address this, we performed a comparative transcriptome analysis focusing on the differential expression in C. annuum 'Dempsey' shoot, callus, and leaf tissue. We further investigated phytohormone-related biological processes and their interacting genes in the C. annuum 'Dempsey' transcriptome based on comparative transcriptomic analysis across five species. RESULTS: We provided a comprehensive view of the gene networks regulating shoot formation on the callus, revealing a strong involvement of hypoxia responses and oxidative stress. Our comparative transcriptome analysis revealed a significant conservation in the increase of gene expression patterns related to auxin and defense mechanisms in both callus and shoot tissues. Consequently, hypoxia response and defense mechanism emerged as critical regulators in callus and shoot formation in C. annuum 'Dempsey'. Current transcriptome data also indicated a substantial decline in gene expression linked to photosynthesis within regenerative tissues, implying a deactivation of the regulatory system governing photosynthesis in C. annuum 'Dempsey'. CONCLUSION: Coupled with defense mechanisms, we thus considered spatial redistribution of auxin to play a critical role in the shoot morphogenesis via primordia outgrowth. Our findings shed light on shoot formation mechanisms in C. annuum 'Dempsey' explants, important information for regeneration programs, and have broader implications for precise molecular breeding in recalcitrant crops.


Assuntos
Capsicum , Perfilação da Expressão Gênica , Brotos de Planta , Transcriptoma , Capsicum/genética , Capsicum/crescimento & desenvolvimento , Capsicum/fisiologia , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Regulação da Expressão Gênica de Plantas , Reguladores de Crescimento de Plantas/metabolismo
4.
Plant J ; 109(4): 816-830, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34797009

RESUMO

Various environmental stresses can induce production of reactive oxygen species (ROS) to turn on signaling for proper responses to those stresses. Plasma membrane (PM)-localized respiratory burst oxidase homologs (RBOHs), in particular RBOHD, produce ROS via the post-translational activation upon abiotic and biotic stresses. Although the mechanisms of RBOHD activation upon biotic stress have been elucidated in detail, it remains elusive how salinity stress activates RBOHD. Here, we present evidence that trafficking of PM-localized RBOHD to endosomes and then its recycling back to the PM is critical for ROS accumulation upon salinity stress. ateca4 plants that were defective in recycling of proteins from endosomes to the PM and clc2-1 and chc2-1 plants that were defective in endocytosis showed a defect in salinity stress-induced ROS production. In addition, ateca4 plants showed a defect in transient accumulation of GFP:RBOHD to the PM at the early stage of salinity stress. By contrast, ateca4 plants showed no defect in the increase in the ROS level and accumulation of RBOHD to the PM upon flg22 treatment as wild-type plants. Based on these observations, we propose that factors involved in the trafficking machinery such as AtECA4 and clathrin are important players in salt stress-induced, but not flg22-induced, ROS accumulation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , ATPases Transportadoras de Cálcio/metabolismo , Clatrina/metabolismo , Endocitose/fisiologia , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Estresse Salino/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , ATPases Transportadoras de Cálcio/genética , Membrana Celular/metabolismo , Endossomos/metabolismo , Regulação da Expressão Gênica de Plantas , Imunidade , NADPH Oxidases/genética , Estresse Fisiológico
5.
Plant J ; 110(6): 1603-1618, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35384109

RESUMO

The phytohormone abscisic acid (ABA) regulates ion channel activity and stomatal movement in response to drought stress. Cellular ABA levels change depending on cellular and environmental conditions via modulation of its biosynthesis, catabolism and transport. Although factors involved in ABA biosynthesis and degradation have been studied extensively, how ABA transporters are modulated to fine-tune ABA levels, especially under drought stress, remains elusive. Here, we show that Arabidopsis thaliana SORTING NEXIN 2 (SNX2) proteins play a critical role in endosomal trafficking of the ABA exporter ATP BINDING CASETTE G25 (ABCG25) via direct interaction at endosomes, leading to its degradation in the vacuole. In agreement, snx2a and snx2b mutant plants showed enhanced recycling of GFP-ABCG25 from early endosomes to the plasma membrane and higher accumulation of GFP-ABCG25. Phenotypically, snx2a and snx2b plants were highly sensitive to exogenous ABA and displayed enhanced ABA-mediated inhibition of inward K+ currents and ABA-mediated activation of slow anion currents in guard cells, resulting in an increased tolerance to drought stress. Based on these results, we propose that SNX2 proteins play a crucial role in stomatal movement and tolerance to drought stress by modulating the endosomal trafficking of ABCG25 and thus cellular ABA levels.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Secas , Estômatos de Plantas/fisiologia
6.
Breast Cancer Res Treat ; 201(2): 193-204, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37365483

RESUMO

PURPOSE: To determine whether six cycles of FEC3-D3 has a comparable efficacy to eight of AC4-D4. METHODS: The enrolled patients (pts) were clinically diagnosed with stage II or III breast cancer. The primary endpoint was a pathologic complete response (pCR), and the secondary endpoints were 3 year disease-free survival (3Y DFS), toxicities, and health-related quality of life (HRQoL). We calculated that 252 pts were needed in each treatment group to enable the detection of non-inferiority (non-inferiority margin of 10%). RESULTS: In terms of ITT analysis, 248 pts were finally enrolled. The 218 pts who completed the surgery were included in the current analysis. The baseline characteristics of these subjects were well balanced between the two arms. By ITT analysis, pCR was achieved in 15/121 (12.4%) pts in the FEC3-D3 arm and 18/126 (14.3%) in the AC4-D4 arm. With a median follow up of 64.1 months, the 3Y DFS was comparable between the two arms (75.8% in FEC3-D3 vs. 75.6% in AC4-D4). The most common adverse event (AE) was Grade 3/4 neutropenia, which arose in 27/126 (21.4%) AC4-D4 arm pts vs 23/121 (19.0%) FEC3-D3 arm cases. The primary HRQoL domains were similar between the two groups (FACT-B scores at baseline, P = 0.35; at the midpoint of NACT, P = 0.20; at the completion of NACT, P = 0.44). CONCLUSION: Six cycles of FEC3-D3 could be an alternative to eight of AC4-D4. Trial registration ClinicalTrials.gov NCT02001506. Registered December 5,2013. https://clinicaltrials.gov/ct2/show/NCT02001506.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Neoplasias da Mama/patologia , Ciclofosfamida/efeitos adversos , Docetaxel/uso terapêutico , Doxorrubicina/efeitos adversos , Fluoruracila/efeitos adversos , Terapia Neoadjuvante , Qualidade de Vida , Resultado do Tratamento
7.
New Phytol ; 238(4): 1386-1402, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36856336

RESUMO

The greater duckweed (Spirodela polyrhiza 7498) exhibits trophic diversity (photoautotrophic, heterotrophic, photoheterotrophic, and mixotrophic growth) depending on the availability of exogenous organic carbon sources and light. Here, we show that the ability to transition between various trophic growth conditions is an advantageous trait, providing great phenotypic plasticity and metabolic flexibility in S. polyrhiza 7498. By comparing S. polyrhiza 7498 growth characteristics, metabolic acclimation, and cellular ultrastructure across these trophic modes, we show that mixotrophy decreases photosynthetic performance and relieves the CO2 limitation of photosynthesis by enhancing the CO2 supply through the active respiration pathway. Proteomic and metabolomic analyses corroborated that S. polyrhiza 7498 increases its intracellular CO2 and decreases reactive oxygen species under mixotrophic and heterotrophic conditions, which substantially suppressed the wasteful photorespiration and oxidative-damage pathways. As a consequence, mixotrophy resulted in a higher biomass yield than the sum of photoautotrophy and heterotrophy. Our work provides a basis for using trophic transitions in S. polyrhiza 7498 for the enhanced accumulation of value-added products.


Assuntos
Adaptação Fisiológica , Araceae , Dióxido de Carbono/farmacologia , Dióxido de Carbono/metabolismo , Fotossíntese , Proteômica
8.
Plant Physiol ; 190(1): 238-249, 2022 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-35699510

RESUMO

Chloroplasts and mitochondria are subcellular organelles that evolved from cyanobacteria and α-proteobacteria, respectively. Although they have their own genomes, the majority of their proteins are encoded by nuclear genes, translated by cytosolic ribosomes, and imported via outer and inner membrane translocon complexes. The unfolding of mature regions of proteins is thought to be a prerequisite for the import of the proteins into these organelles. However, it is not fully understood how protein folding properties affect their import into these organelles. In this study, we examined the import behavior of chloroplast and mitochondrial reporters with normal green fluorescent protein (GFP) and two GFP variants with enhanced folding propensity, superfolder GFP (sfGFP) and extra-superfolder GFP (esGFP), which is folded better than sfGFP. sfGFP and esGFP were less dependent on the sequence motifs of the transit peptide (TP) and import machinery during protein import into Arabidopsis (Arabidopsis thaliana) chloroplasts, compared with normal GFP. sfGFP and esGFP were efficiently imported into chloroplasts by a mutant TP with an alanine substitution in the N-terminal MLM motif, whereas the same mutant TP showed a defect in importing normal GFP into chloroplasts. Moreover, sfGFP and esGFP were efficiently imported into plastid protein import 2 (ppi2) and heat shock protein 93-V (hsp93-V) plants, which have mutations in atToc159 and Hsp93-V, respectively. In contrast, the presequence-mediated mitochondrial import of sfGFP and esGFP was severely impaired. Based on these results, we propose that the chloroplast import machinery is more tolerant to different folding states of preproteins, whereas the mitochondrial machinery is more specialized in the translocation of unfolded preproteins.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Transporte Proteico
9.
Plant Cell Environ ; 46(11): 3420-3432, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37469026

RESUMO

Drought and high salinity are major environmental factors that reduce plant growth and development, leading to loss of plant productivity in agriculture. Under these stress conditions, photosynthesis is greatly suppressed despite the high cellular energy cost of stress response processes. Currently, the process that allows plants to secure the energy required for osmotic stress responses remains elusive. Here, we provide evidence that cytochrome b5 reductase 1 (CBR1), a cytochrome b5 reductase, plays an important role in ATP production in response to NaCl and dehydration stresses. Overexpression and loss of function of CBR1 led to enhanced resistance and sensitivity, respectively, to osmotic stress. Upon exposure to osmotic stress, CBR1 was localised to the endoplasmic reticulum (ER) instead of to mitochondria, where it was localised under normal conditions. Transgenic plants overexpressing ER-targeted CBR1 showed enhanced resistance to osmotic stress. Moreover, CBR1-ER and CBR1-OX plants, had higher levels of ATP and unsaturated fatty acids under osmotic stress. However, these effects were abrogated by thioridazine and 2-deoxy glucose, inhibitors of ß-oxidation and glycolysis, respectively. Based on these results, we propose that ER-localised CBR1 triggers ATP production via the production and ß-oxidation of polyunsaturated fatty acids under osmotic stress.


Assuntos
Citocromos b5 , Ácidos Graxos Insaturados , Pressão Osmótica/fisiologia , Citocromos b5/farmacologia , Oxirredutases , Retículo Endoplasmático , Mitocôndrias , Trifosfato de Adenosina , Estresse Fisiológico , Regulação da Expressão Gênica de Plantas
10.
Plant Cell Environ ; 46(11): 3258-3272, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37427814

RESUMO

The natural variation between Arabidopsis (Arabidopsis thaliana) ecotypes Columbia (Col) and Landsberg erecta (Ler) strongly affects abscisic acid (ABA) signalling and drought tolerance. Here, we report that the cysteine-rich receptor-like protein kinase CRK4 is involved in regulating ABA signalling, which contributes to the differences in drought stress tolerance between Col-0 and Ler-0. Loss-of-function crk4 mutants in the Col-0 background were less drought tolerant than Col-0, whereas overexpressing CRK4 in the Ler-0 background partially to completely restored the drought-sensitive phenotype of Ler-0. F1 plants derived from a cross between the crk4 mutant and Ler-0 showed an ABA-insensitive phenotype with respect to stomatal movement, along with reduced drought tolerance like Ler-0. We demonstrate that CRK4 interacts with the U-box E3 ligase PUB13 and enhances its abundance, thus promoting the degradation of ABA-INSENSITIVE 1 (ABI1), a negative regulator of ABA signalling. Together, these findings reveal an important regulatory mechanism for modulating ABI1 levels by the CRK4-PUB13 module to fine-tune drought tolerance in Arabidopsis.

11.
Plant Cell ; 32(11): 3535-3558, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32938753

RESUMO

Irrigated lands are increasingly salinized, which adversely affects agricultural productivity. To respond to high sodium (Na+) concentrations, plants harbor multiple Na+ transport systems. Rice (Oryza sativa) HIGH-AFFINITY POTASSIUM (K+) TRANSPORTER1;5 (OsHKT1;5), a Na+-selective transporter, maintains K+/Na+ homeostasis under salt stress. However, the mechanism regulating OsHKT1;5 expression remains unknown. Here, we present evidence that a protein complex consisting of rice BCL-2-ASSOCIATED ATHANOGENE4 (OsBAG4), OsMYB106, and OsSUVH7 regulates OsHKT1;5 expression in response to salt stress. We isolated a salt stress-sensitive mutant, osbag4-1, that showed significantly reduced OsHKT1;5 expression and reduced K+ and elevated Na+ levels in shoots. Using comparative interactomics, we isolated two OsBAG4-interacting proteins, OsMYB106 (a MYB transcription factor) and OsSUVH7 (a DNA methylation reader), that were crucial for OsHKT1;5 expression. OsMYB106 and OsSUVH7 bound to the MYB binding cis-element (MYBE) and the miniature inverted-repeat transposable element (MITE) upstream of the MYBE, respectively, in the OsHKT1;5 promoter. OsBAG4 functioned as a bridge between OsSUVH7 and OsMYB106 to facilitate OsMYB106 binding to the consensus MYBE in the OsHKT1;5 promoter, thereby activating the OsHKT1;5 expression. Elimination of the MITE or knockout of OsMYB106 or OsSUVH7 decreased OsHKT1;5 expression and increased salt sensitivity. Our findings reveal a transcriptional complex, consisting of a DNA methylation reader, a chaperone regulator, and a transcription factor, that collaboratively regulate OsHKT1;5 expression during salinity stress.


Assuntos
Metilação de DNA , Oryza/fisiologia , Proteínas de Plantas/genética , Estresse Salino/genética , Sistemas CRISPR-Cas , Elementos de DNA Transponíveis , DNA de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Oryza/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
J Integr Plant Biol ; 65(2): 408-416, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36223071

RESUMO

Subcellular organelles in eukaryotes are surrounded by lipid membranes. In an endomembrane system, vesicle trafficking is the primary mechanism for the delivery of organellar proteins to specific organelles. However, organellar proteins for chloroplasts, mitochondria, the nucleus, and peroxisomes that are translated in the cytosol are directly imported into their target organelles. Chloroplasts are a plant-specific organelle with outer and inner envelope membranes, a dual-membrane structure that is similar to mitochondria. Interior chloroplast proteins translated by cytosolic ribosomes are thus translocated through TOC and TIC complexes (translocons in the outer and inner envelope of chloroplasts, respectively), with stromal ATPase motor proteins playing a critical role in pulling pre-proteins through these import channels. Over the last three decades, the identity and function of TOC/TIC components and stromal motor proteins have been actively investigated, which has shed light on the action mechanisms at a molecular level. However, there remains some disagreement over the exact composition of TIC complexes and genuine stromal motor proteins. In this review, we discuss recent findings on the mechanisms by which proteins are translocated through TOC/TIC complexes and discuss future prospects for this field of research.


Assuntos
Cloroplastos , Proteínas de Plantas , Proteínas de Plantas/metabolismo , Cloroplastos/metabolismo , Proteínas de Cloroplastos/metabolismo , Organelas/metabolismo , Transporte Proteico
13.
J Integr Plant Biol ; 65(6): 1505-1520, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36897023

RESUMO

Protein biogenesis is a complex process, and complexity is greatly increased in eukaryotic cells through specific targeting of proteins to different organelles. To direct targeting, organellar proteins carry an organelle-specific targeting signal for recognition by organelle-specific import machinery. However, the situation is confusing for transmembrane domain (TMD)-containing signal-anchored (SA) proteins of various organelles because TMDs function as an endoplasmic reticulum (ER) targeting signal. Although ER targeting of SA proteins is well understood, how they are targeted to mitochondria and chloroplasts remains elusive. Here, we investigated how the targeting specificity of SA proteins is determined for specific targeting to mitochondria and chloroplasts. Mitochondrial targeting requires multiple motifs around and within TMDs: a basic residue and an arginine-rich region flanking the N- and C-termini of TMDs, respectively, and an aromatic residue in the C-terminal side of the TMD that specify mitochondrial targeting in an additive manner. These motifs play a role in slowing down the elongation speed during translation, thereby ensuring mitochondrial targeting in a co-translational manner. By contrast, the absence of any of these motifs individually or together causes at varying degrees chloroplast targeting that occurs in a post-translational manner.


Assuntos
Mitocôndrias , Sinais Direcionadores de Proteínas , Sequência de Aminoácidos , Mitocôndrias/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Plantas/metabolismo , Cloroplastos/metabolismo , Transporte Proteico
14.
J Plant Biol ; : 1-10, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37360984

RESUMO

Infection with human papillomavirus (HPV) can cause cervical cancers in women, and vaccination against the virus is one of most effective ways to prevent these cancers. Two vaccines made of virus-like particles (VLPs) of HPV L1 proteins are currently commercially available. However, these HPV vaccines are highly expensive, and thus not affordable for women living in developing countries. Therefore, great demand exists to produce a cost-effective vaccine. Here, we investigate the production of self-assembled HPV16 VLPs in plants. We generated a chimeric protein composed of N-terminal 79 amino acid residues of RbcS as a long-transit peptide to target chloroplasts, the SUMO domain, and HPV16 L1 proteins. The chimeric gene was expressed in plants with chloroplast-targeted bdSENP1, a protein that specifically recognizes the SUMO domain and cleaves its cleavage site. This co-expression of bdSENP1 led to the release of HPV16 L1 from the chimeric proteins without any extra amino acid residues. HPV16 L1 purified by heparin chromatography formed VLPs that mimicked native virions. Moreover, the plant-produced HPV16 L1 VLPs elicited strong immune responses in mice without adjuvants. Thus, we demonstrated the cost-effective production of HPV16 VLPs in plants. Supplementary Information: The online version contains supplementary material available at 10.1007/s12374-023-09393-6.

15.
Plant Biotechnol J ; 20(12): 2298-2312, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36062974

RESUMO

The ongoing coronavirus disease 2019 (COVID-19) pandemic has spurred rapid development of vaccines as part of the public health response. However, the general strategy used to construct recombinant trimeric severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) proteins in mammalian cells is not completely adaptive to molecular farming. Therefore, we generated several constructs of recombinant S proteins for high expression in Nicotiana benthamiana. Intramuscular injection of N. benthamiana-expressed Sct vaccine (NSct Vac) into Balb/c mice elicited both humoral and cellular immune responses, and booster doses increased neutralizing antibody titres. In human angiotensin-converting enzyme knock-in mice, two doses of NSct Vac induced anti-S and neutralizing antibodies, which cross-neutralized Alpha, Beta, Delta and Omicron variants. Survival rates after lethal challenge with SARS-CoV-2 were up to 80%, without significant body weight loss, and viral titres in lung tissue fell rapidly, with no infectious virus detectable at 7-day post-infection. Thus, plant-derived NSct Vac could be a candidate COVID-19 vaccine.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Camundongos , Animais , Humanos , Nicotiana/genética , SARS-CoV-2 , COVID-19/prevenção & controle , Adjuvantes Imunológicos , Camundongos Endogâmicos BALB C , Anticorpos Neutralizantes , Imunidade , Mamíferos
16.
New Phytol ; 236(2): 495-511, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35751377

RESUMO

Initially discovered in yeast, mitochondrial retrograde signalling has long been recognised as an essential in the perception of stress by eukaryotes. However, how to maintain the optimal amplitude and duration of its activation under natural stress conditions remains elusive in plants. Here, we show that TaSRO1, a major contributor to the agronomic performance of bread wheat plants exposed to salinity stress, interacted with a transmembrane domain-containing NAC transcription factor TaSIP1, which could translocate from the endoplasmic reticulum (ER) into the nucleus and activate some mitochondrial dysfunction stimulon (MDS) genes. Overexpression of TaSIP1 and TaSIP1-∆C (a form lacking the transmembrane domain) in wheat both compromised the plants' tolerance of salinity stress, highlighting the importance of precise regulation of this signal cascade during salinity stress. The interaction of TaSRO1/TaSIP1, in the cytoplasm, arrested more TaSIP1 on the membrane of ER, and in the nucleus, attenuated the trans-activation activity of TaSIP1, therefore reducing the TaSIP1-mediated activation of MDS genes. Moreover, the overexpression of TaSRO1 rescued the inferior phenotype induced by TaSIP1 overexpression. Our study provides an orchestrating mechanism executed by the TaSRO1-TaSIP1 module that balances the growth and stress response via fine tuning the level of mitochondria retrograde signalling.


Assuntos
Regulação da Expressão Gênica de Plantas , Estresse Fisiológico , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Salinidade , Tolerância ao Sal/genética , Fatores de Transcrição/metabolismo , Triticum/metabolismo
17.
J Integr Plant Biol ; 64(8): 1596-1613, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35713200

RESUMO

Plant cells have two endosymbiotic organelles, chloroplasts, and mitochondria. These organelles perform specific functions that depend on organelle-specific proteins. The majority of chloroplast and mitochondrial proteins are specifically imported by the transit peptide and presequence, respectively. However, a significant number of proteins are also dually targeted to these two organelles. Currently, it is not fully understood how proteins are dually targeted to both chloroplasts and mitochondria. In this study, the mechanism underlying mitochondrial targeting of dual targeting AtSufE1 in Arabidopsis was elucidated. The N-terminal fragment containing 80 residues of AtSufE1 (AtSufE1N80) was sufficient to confer dual targeting of reporter protein, AtSufE1N80:GFP, in protoplasts. Two sequence motifs, two arginine residues at 15th and 21st positions, and amino acid (aa) sequence motif AKTLLLRPLK from the 31st to 40th aa position, were responsible for targeting to mitochondria a portion of reporter proteins amid the chloroplast targeting. The sequence motif PSEVPFRRT from the 41st to 50th aa position constitutes a common motif for targeting to both chloroplasts and mitochondria. For mitochondrial import of AtSufE1:N80, Metaxin played a critical role. In addition, BiFC and protein pull-down experiments showed that AtSufE1N80 specifically interacts with import receptors, Metaxin and Tom20. The interaction of AtSufE1N80 with Metaxin was required for the interaction with Tom20. Based on these results, we propose that mitochondrial targeting of dual-targeting AtSufE1 is mediated by both mitochondria-specific and common sequence motifs in the signal sequence through the interaction with import receptors, Metaxin and Tom20, in a successive manner.


Assuntos
Arabidopsis , Cloroplastos , Sequência de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo , Cloroplastos/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Transporte Proteico
18.
J Plant Biol ; 65(1): 21-28, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34602836

RESUMO

Viral diseases are extremely widespread infections that change constantly through mutations. To produce vaccines against viral diseases, transient expression systems are employed, and Nicotiana benthamiana (tobacco) plants are a rapidly expanding platform. In this study, we developed a recombinant protein vaccine targeting the major capsid protein (MCP) of iridovirus fused with the lysine motif (LysM) and coiled-coil domain of coronin 1 (ccCor1) for surface display using Lactococcus lactis. The protein was abundantly produced in N. benthamiana in its N-glycosylated form. Total soluble proteins isolated from infiltrated N. benthamiana leaves were treated sequentially with increasing ammonium sulfate solution, and recombinant MCP mainly precipitated at 40-60%. Additionally, affinity chromatography using Ni-NTA resin was applied for further purification. Native structure analysis using size exclusion chromatography showed that recombinant MCP existed in a large oligomeric form. A minimum OD600 value of 0.4 trichloroacetic acid (TCA)-treated L. lactis was required for efficient recombinant MCP display. Immunogenicity of recombinant MCP was assessed in a mouse model through enzyme-linked immunosorbent assay (ELISA) with serum-injected recombinant MCP-displaying L. lactis. In summary, we developed a plant-based recombinant vaccine production system combined with surface display on L. lactis.

19.
New Phytol ; 230(3): 924-930, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33404103

RESUMO

Organellogenesis, a key aspect of eukaryotic cell evolution, critically depends on the successful establishment of organellar protein import mechanisms. Phylogenetic analysis revealed that the evolution of the two endosymbiotic organelles, the mitochondrion and the chloroplast, is thought to have occurred at time periods far from each other. Despite this, chloroplasts and mitochondria have highly similar protein import mechanisms. This raises intriguing questions such as what underlies such similarity in the import mechanisms and how these similar mechanisms have evolved. In this review, we summarise the recent findings regarding sorting and specific targeting of these organellar proteins. Based on these findings, we propose possible evolutionary scenarios regarding how the signal sequences of chloroplasts and mitochondrial proteins ended up having such relationship.


Assuntos
Cloroplastos , Organelas , Cloroplastos/metabolismo , Mitocôndrias , Filogenia , Simbiose
20.
Plant Cell Environ ; 44(9): 3034-3048, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34129248

RESUMO

Abiotic stress, a serious threat to plants, occurs for extended periods in nature. Abscisic acid (ABA) plays a critical role in abiotic stress responses in plants. Therefore, stress responses mediated by ABA have been studied extensively, especially in short-term responses. However, long-term stress responses mediated by ABA remain largely unknown. To elucidate the mechanism by which plants respond to prolonged abiotic stress, we used long-term ABA treatment that activates the signalling against abiotic stress such as dehydration and investigated mechanisms underlying the responses. Long-term ABA treatment activates constitutive photomorphogenic 1 (COP1). Active COP1 mediates the ubiquitination of golden2-like1 (GLK1) for degradation, contributing to lowering expression of photosynthesis-associated genes such as glutamyl-tRNA reductase (HEMA1) and protochlorophyllide oxidoreductase A (PORA), resulting in the suppression of chloroplast development. Moreover, COP1 activation and GLK1 degradation upon long-term ABA treatment depend on light intensity. Additionally, plants with COP1 mutation or exposed to higher light intensity were more sensitive to salt stress. Collectively, our results demonstrate that long-term treatment of ABA leads to activation of COP1 in a light intensity-dependent manner for GLK1 degradation to suppress chloroplast development, which we propose to constitute a mechanism of balancing normal growth and stress responses upon the long-term abiotic stress.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/fisiologia , Cloroplastos/fisiologia , Reguladores de Crescimento de Plantas/fisiologia , Fatores de Transcrição/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Dimerização , Relação Dose-Resposta à Radiação , Luz , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA