Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
1.
Bioorg Med Chem Lett ; 30(24): 127651, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33130290

RESUMO

Xanthorrhizol, isolated from the Indonesian Java turmeric Curcuma xanthorrhiza, displays broad-spectrum antibacterial activity. We report herein the evidence that mechanism of action of xanthorrhizol may involve FabI, an enoyl-(ACP) reductase, inhibition. The predicted Y156V substitution in the FabI enzyme promoted xanthorrhizol resistance, while the G93V mutation originally known for triclosan resistance was not effective against xanthorrhizol. Two other mutations, F203L and F203V, conferred FabI enzyme resistance to both xanthorrhizol and triclosan. These results showed that xanthorrhizol is a food-grade antimicrobial compound targeting FabI but with a different mode of binding from triclosan.


Assuntos
Antibacterianos/farmacologia , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Proteínas de Escherichia coli/antagonistas & inibidores , Escherichia coli/enzimologia , Aditivos Alimentares/farmacologia , Fenóis/farmacologia , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/metabolismo , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/microbiologia , Proteínas de Escherichia coli/metabolismo , Ácido Graxo Sintase Tipo II/antagonistas & inibidores , Ácido Graxo Sintase Tipo II/metabolismo , Humanos , Simulação de Acoplamento Molecular
2.
Molecules ; 20(9): 16290-305, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26370953

RESUMO

Xanthorrhizol is a potent antimicrobial compound isolated from the rhizome of Curcuma xanthorrhiza. However, the mechanism of xanthorrhizol action is unknown. To screen for probable target(s), we introduced the ASKA pooled-plasmid library into Escherichia coli W3110 imp4213 and enriched the library for resistant clones with increasing concentrations of xanthorrhizol. After three rounds of enrichment, we found nine genes that increased xanthorrhizol resistance. The resistant clones were able to grow in LB medium containing 256 µg/mL xanthorrhizol, representing a 16-fold increase in the minimum inhibitory concentration. Subsequent DNA sequence analysis revealed that overexpression of tadA, galU, fucU, ydeA, ydaC, soxS, nrdH, yiiD, and mltF genes conferred increased resistance towards xanthorrhizol. Among these nine genes, tadA is the only essential gene. tadA encodes a tRNA-specific adenosine deaminase. Overexpression of E. coli W3110 imp4213 (pCA24N-tadA) conferred resistance to xanthorrhizol up to 128 µg/mL. Moreover, overexpression of two tadA mutant enzymes (A143V and F149G) led to a twofold increase in the MIC. These results suggest that the targets of xanthorrhizol may include tadA, which has never before been explored as an antibiotic target.


Assuntos
Adenosina Desaminase/metabolismo , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Fenóis/farmacologia , RNA de Transferência/genética , Adenosina Desaminase/genética , Testes de Sensibilidade Microbiana
3.
Biochem Biophys Res Commun ; 445(2): 433-8, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24530909

RESUMO

Kirenol, a natural diterpenoid compound, has been reported to possess anti-oxidant, anti-inflammatory, anti-allergic, and anti-arthritic activities; however, its anti-adipogenic effect remains to be studied. The present study evaluated the effect of kirenol on anti-adipogenesis through the activation of the Wnt/ß-catenin signaling pathway. Kirenol prevented intracellular lipid accumulation by down-regulating key adipogenesis transcription factors [peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding proteins α (C/EBPα), and sterol regulatory element binding protein-1c (SREBP-1c)] and lipid biosynthesis-related enzymes [fatty acid synthase (FAS) and acetyl-CoA carboxylase (ACC)], as well as adipocytokines (adiponectin and leptin). Kirenol effectively activated the Wnt/ß-catenin signaling pathway, in which kirenol up-regulated the expression of low density lipoprotein receptor related protein 6 (LRP6), disheveled 2 (DVL2), ß-catenin, and cyclin D1 (CCND1), while it inactivated glycogen synthase kinase 3ß (GSK3ß) by increasing its phosphorylation. Kirenol down-regulated the expression levels of PPARγ and C/EBPα, which were up-regulated by siRNA knockdown of ß-catenin. Overall, kirenol is capable of inhibiting the differentiation and lipogenesis of 3T3-L1 adipocytes through the activation of the Wnt/ß-catenin signaling pathway, suggesting its potential as natural anti-obesity agent.


Assuntos
Adipócitos/efeitos dos fármacos , Adipogenia/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Diterpenos/farmacologia , Via de Sinalização Wnt/efeitos dos fármacos , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Fármacos Antiobesidade/farmacologia , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Regulação para Baixo/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Camundongos , PPAR gama/genética , Interferência de RNA , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , beta Catenina/genética , beta Catenina/metabolismo
4.
Photodermatol Photoimmunol Photomed ; 30(5): 237-45, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24313661

RESUMO

BACKGROUND: Chronic skin exposure to ultraviolet (UV) light increases reactive oxygen species (ROS) and stimulates the expression of matrix metalloproteinases (MMPs) through c-Jun and c-Fos activation. These signaling cascades induce the degradation of extracellular matrix (ECM) components, resulting in photoaging. METHODS: This study evaluated the preventive effect of the ethanol extract of Kaempferia parviflora Wall. ex. Baker (black ginger) on UVB-induced photoaging in vivo. To investigate the antiphotoaging effect of K. parviflora extract (KPE), UVB-irradiated hairless mice administered oral doses of KPE (100 or 200 mg/kg/day) for 13 weeks. RESULTS: In comparison to the UVB control group, KPE significantly prevented wrinkle formation and the loss of collagen fibers with increased type I, III, and VII collagen genes (COL1A1, COL3A1, and COL7A1). The decrease in wrinkle formation was associated with a significant reduction in the UVB-induced expression of MMP-2, MMP-3, MMP-9, and MMP-13 via the suppression of c-Jun and c-Fos activity. KPE also increased the expression of catalase, which acts as an antioxidant enzyme in skin. In addition, expression of inflammatory mediators, such as nuclear factor kappa B (NF-κB), interleukin-1ß (IL-1ß), and cyclooxygenase-2 (COX-2), was significantly reduced by KPE treatment. CONCLUSION: The results show that oral administration of KPE significantly prevents UVB-induced photoaging in hairless mice, suggesting its potential as a natural antiphotoaging material.


Assuntos
Extratos Vegetais/farmacologia , Envelhecimento da Pele/efeitos dos fármacos , Pele/efeitos da radiação , Raios Ultravioleta , Zingiberaceae/química , Animais , Sequência de Bases , Western Blotting , Primers do DNA , Feminino , Camundongos , Camundongos Pelados , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Pele/enzimologia , Pele/metabolismo
5.
J Asian Nat Prod Res ; 16(12): 1139-47, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25465718

RESUMO

Chronic exposure to ultraviolet (UV) irradiation causes sunburn, inflammatory responses, skin cancer, and photoaging. Photoaging, in particular, generates reactive oxygen species (ROS) that stimulate mitogen-activated protein kinase (MAPK) signaling and transcription factors. UV irradiation also activates matrix metalloproteinases (MMPs) expression and inactivates collagen synthesis. Aaptamine, a marine alkaloid isolated from the marine sponge, has been reported to have antitumor, antimicrobial, antiviral, and antioxidant activities. However, the photo-protective effects of aaptamine have not been elucidated. In this study, our data demonstrated that aaptamine deactivated UVB-induced MAPK and activator protein-1 signaling by suppressing ROS, resulting in attenuating the expression of MMPs in UVB-irradiated human dermal fibroblasts. Aaptamine also decreased proinflammatory cytokines such as cyclooxygenase-2, tumor necrosis factor-α, interleukin-1ß, and nuclear factor-kappa B subunits in UVB-irradiated human keratinocytes. In conclusion, we suggest that aaptamine represents a novel and effective strategy for treatment and prevention of photoaging.


Assuntos
Metaloproteinase 1 da Matriz/efeitos dos fármacos , Metaloproteinase 2 da Matriz/efeitos dos fármacos , Naftiridinas/farmacologia , Dermatopatias/prevenção & controle , Raios Ultravioleta/efeitos adversos , Epiderme/metabolismo , Fibroblastos/efeitos dos fármacos , Humanos , Interleucina-1beta/metabolismo , Queratinócitos/efeitos dos fármacos , Estrutura Molecular , NF-kappa B/metabolismo , Naftiridinas/química , Espécies Reativas de Oxigênio/análise , Espécies Reativas de Oxigênio/metabolismo , Envelhecimento da Pele/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
6.
Integr Med Res ; 13(1): 101020, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38298864

RESUMO

Background: Cancer cachexia-characterized by anorexia, body weight loss, skeletal muscle atrophy, and fat loss-affects nearly 80% of cancer patients and accounts for 20% of cancer deaths. Curcuma xanthorrhiza, known as Java turmeric, and its active compound xanthorrhizol (XAN) exhibit anticancer, anti-inflammatory, and antioxidant properties. However, the ameliorative effects of C. xanthorrhiza extract (CXE) and XAN on cancer-associated adipose atrophy remain unexplored. This study aimed to evaluate the therapeutic effects of CXE and XAN on cancer cachexia-induced adipose tissue wasting in CT26 tumor-bearing mice. Methods: CT26 cells were injected subcutaneously into the right flank of BALB/c mice to establish a cancer cachexia model. To evaluate the inhibitory effects of CXE and XAN on cancer cachexia, 50 and 100 mg/kg CXE and 15 mg/kg XAN were administered orally every day for 1 week. Results: CXE and XAN administration significantly attenuated the loss of body weight and epidydimal fat mass by cancer cachexia. In epididymal adipose tissues, administration of CXE or XAN inhibited white adipose tissue browning by repressing expression of the thermogenic genes. Simultaneously, CXE or XAN attenuated fat catabolism through the downregulation of lipolytic genes. The administration of CXE or XAN induced the expression of genes associated with adipogenesis and lipogenesis-related genes. Moreover, CXE or XAN treatment was associated with maintaining metabolic homeostasis; regulating the expression of adipokines and AMP-activated protein kinase (AMPK). Conclusions: CXE and XAN mitigate cancer-induced adipose tissue atrophy, primarily by modulating lipid metabolism and WAT browning, indicating their therapeutic potential for cachectic cancer patients.

7.
Prev Nutr Food Sci ; 29(2): 154-161, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38974592

RESUMO

Skeletal muscle atrophy, which is characterized by diminished muscle mass, strength, and function, is caused by malnutrition, physical inactivity, aging, and diseases. Korean mint (Agastache rugosa Kuntze) possesses various biological functions, including anti-inflammatory, antioxidant, anticancer, and antiosteoporosis activities. Moreover, it contains tilianin, which is a glycosylated flavone that exerts antioxidant, anti-inflammatory, antidiabetic, and neuroprotective activities. However, no studies have analyzed the inhibitory activity of A. rugosa extract (ARE) and tilianin on muscle atrophy. Thus, the present study investigated the potential of ARE and tilianin on muscle atrophy and their underlying mechanisms of action in C2C12 myotubes treated with tumor necrosis factor-α (TNF-α). The results showed that ARE and tilianin promoted the phosphatidylinositol 3-kinase/protein kinase B pathway, thereby activating mammalian target of rapamycin (a protein anabolism-related factor) and its downstream factors. Moreover, ARE and tilianin inhibited the mRNA expression of muscle RING-finger protein-1 and atrogin-1 (protein catabolism-related factors) by blocking Forkhead box class O3 translocation. ARE and tilianin also mitigated inflammatory responses by downregulating nuclear factor-kappa B expression levels, thereby diminishing the expression levels of inflammatory cytokines, including TNF-α and interleukin-6. Additionally, ARE and tilianin enhanced the expression levels of antioxidant enzymes, including catalase, superoxide dismutase, and glutathione peroxidase. Overall, these results suggest that ARE and tilianin are potential functional ingredients for preventing or improving muscle atrophy.

8.
Food Sci Biotechnol ; 33(15): 3617-3628, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39493393

RESUMO

Muscle atrophy or muscle wasting, which is featured by reduced muscle function and mass, typically results from disuse, aging, and chronic diseases. The deer antler, which refers to the young and non-ossified antlers of various species of deer-related animals, is not fully calcified and comprises of densely growing hair. Here, we investigated whether Bacillus subtilis-fermented antler extract (FAE) inhibits immobilization-induced muscle atrophy in C57BL/6J mice. Oral administration of FAE increased grip strength, exercise performance, muscle mass, and volume in mice. FAE stimulated the phosphatidylinositol 3-kinase (PI3K)/Akt pathway, enhancing the mammalian target of rapamycin pathway for muscle synthesis. FAE phosphorylated Forkhead box O3 and downregulated muscle RING finger-1 and atrogin-1 for proteolysis. FAE inhibited the mRNA expression of tumor necrosis factor alpha and interleukin-6 through nuclear factor kappa B. Consequently, FAE attenuated muscle atrophy by regulating the PI3K/Akt pathway and inflammation.

9.
Phytother Res ; 27(7): 1061-6, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22969012

RESUMO

The purpose of this study was to investigate the activity of xanthorrhizol isolated from Curcuma xanthorrhiza Roxb. on Candida albicans biofilms at adherent, intermediate, and mature phase of growth. C. albicans biofilms were formed in flat-bottom 96-well microtiter plates. The biofilms of C. albicans at different phases of development were exposed to xanthorrhizol at different concentrations (0.5 µg/mL-256 µg/mL) for 24 h. The metabolic activity of cells within the biofilms was quantified using the XTT reduction assay. Sessile minimum inhibitory concentrations (SMICs) were determined at 50% and 80% reduction in the biofilm OD490 compared to the control wells. The SMIC50 and SMIC80 of xanthorrhizol against 18 C. albicans biofilms were 4--16 µg/mL and 8--32 µg/mL, respectively. The results demonstrated that the activity of xanthorrhizol in reducing C. albicans biofilms OD490 was dependent on the concentration and the phase of growth of biofilm. Xanthorrhizol at concentration of 8 µg/mL completely reduced in biofilm referring to XTT-colorimetric readings at adherent phase, whereas 32 µg/mL of xanthorrhizol reduced 87.95% and 67.48 % of biofilm referring to XTT-colorimetric readings at intermediate and mature phases, respectively. Xanthorrhizol displayed potent activity against C. albicans biofilms in vitro and therefore might have potential therapeutic implication for biofilm-associated candidal infections.


Assuntos
Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/fisiologia , Curcuma/química , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Rizoma/química , Biofilmes/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana
10.
Phytother Res ; 27(4): 493-8, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22627996

RESUMO

Xanthorrhizol, a natural sesquiterpenoid compound isolated from Curcuma xanthorrhiza Roxb, has been known to inhibit the growth of human colon, breast, liver and cervical cancer cells. In this study, xanthorrhizol decreased cell viability, induced apoptosis and decreased the level of full-length PARP in SCC-15 oral squamous cell carcinoma (OSCC) cells. A decrease in cell viability and PARP degradation was not prevented by treatment with the caspase inhibitor Z-VAD-fmk in xanthorrhizol-treated cells. Xanthorrhizol treatment elevated intracellular Ca(2+) and ROS levels in SCC-15 cells. Treatment with a Ca(2+) chelator, EGTA/AM, did not affect xanthorrhizol- induced cytotoxicity, but cell viability was partly recovered by treatment with endogenous antioxidant, GSH, or hydroxy radical trapper, MCI-186. Furthermore, the viability of xanthorrhizol-treated SCC-15 cells was significantly restored by treatment with SB203580 and/or SP600125 but not significantly by PD98059 treatment. Xanthorrhizol-induced activation of p38 MAPK and JNK was blocked by MCI-186. Finally, xanthorrhizol suppressed the number of tumors in buccal pouches and increased the survival rate in hamsters treated with 7,12-dimethylbenz[a]anthracene. In conclusion, xanthorrhizol may induce caspase-independent apoptosis through ROS-mediated p38 MAPK and JNK activation in SCC-15 OSCC cells and prevent chemical-induced oral carcinogenesis. Therefore, xanthorrhizol seems to be a promising chemopreventive agent.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma de Células Escamosas/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neoplasias Bucais/patologia , Fenóis/farmacologia , 9,10-Dimetil-1,2-benzantraceno , Animais , Antineoplásicos Fitogênicos/farmacologia , Carcinoma de Células Escamosas/metabolismo , Inibidores de Caspase/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular , Cricetinae , Humanos , Masculino , Neoplasias Bucais/metabolismo , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Espécies Reativas de Oxigênio/metabolismo
11.
Exp Dermatol ; 21(3): 211-6, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22379967

RESUMO

Peroxisome proliferator-activated receptors (PPARs), which are members of the nuclear hormone receptor superfamily, are a family of ligand-activated transcription factors that consist of three isotypes (PPAR α, δ and γ). PPAR activity was previously thought to be limited to lipid metabolism and glucose homeostasis; however, intensive studies of PPARα/γ in recent years have revealed their importance in age-related inflammation and photoaging as regulators of cytokines, matrix metalloproteinases (MMPs) and nuclear factor-kappa B (NF-κB). We evaluated the ability of the PPARα/γ activator 5,7-dimethoxyflavone (5,7-DMF) to inhibit ultraviolet B (UVB)-induced MMP expression in Hs68 human skin fibroblasts. Hs68 cells were treated with 5,7-DMF and then exposed to UVB irradiation. MMP expression, production and activity were determined by reverse transcription-polymerase chain reaction, enzyme-linked immunosorbent assay and gelatin zymography. PPARα/γ expression, catalase expression, and mitogen-activated protein kinase (MAPK), activator protein-1 (AP-1) and NF-κB signalling were evaluated by Western blot analysis. PPARα/γ activity was assessed with the GAL4/PPARα/γ transactivation assay. We found that 5,7-DMF strongly decreased MMP expression, production and activity. In addition, 5,7-DMF significantly increased PPARα/γ activation and catalase expression, thereby downregulating UVB-induced reactive oxygen species (ROS) production, ROS-induced MAPK signalling and downstream transcription factors. Finally, 5,7-DMF reduced IκBα phosphorylation, blocked NF-κB p65 nuclear translocation, strongly suppressed proinflammatory cytokines such as interleukin-6 (IL-6) and IL-8. 5,7-DMF prevents UVB-induced MMP expression by suppressing UVB-induced oxidative stress and age-related inflammation via NF-κB and MAPK/AP-1 pathways. Our findings suggest the usefulness of 5,7-DMF for preventing and treating skin photoaging.


Assuntos
Fibroblastos/efeitos dos fármacos , Flavonoides/farmacologia , Metaloproteinases da Matriz/metabolismo , Protetores contra Radiação/farmacologia , Pele/citologia , Raios Ultravioleta , Animais , Células COS , Técnicas de Cultura de Células , Chlorocebus aethiops , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Humanos , PPAR alfa/metabolismo , PPAR gama/metabolismo , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Envelhecimento da Pele/efeitos dos fármacos , Zingiberaceae/química
12.
Biol Pharm Bull ; 35(10): 1669-75, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23037157

RESUMO

Exposure to ultraviolet (UV) light causes premature skin aging that is associated with upregulated matrix metalloproteinases (MMPs) and decreased collagen synthesis. Macelignan, a natural lignan compound isolated from Myristica fragrans HOUTT. (nutmeg), has been reported to possess antioxidant and antiinflammatory activities. This study assessed the effects of macelignan on photoaging and investigated its mechanisms of action in UV-irradiated human skin fibroblasts (Hs68) by reverse transcription-polymerase chain reaction, Western blot analysis, 2',7'-dichlorofluorescein diacetate assay, and enzyme-linked immunosorbent assay. Our results show that macelignan attenuated UV-induced MMP-1 expression by suppressing phosphorylation of mitogen-activated protein kinases (MAPKs) induced by reactive oxygen species. Macelignan also increased type I procollagen expression and secretion through transforming growth factor ß (TGF-ß)/Smad signaling. These findings indicate that macelignan regulates the expression of MMP-1 and type I procollagen in UV-irradiated human skin fibroblasts by modulating MAPK and TGF-ß/Smad signaling, suggesting its potential as an efficacious antiphotoaging agent.


Assuntos
Colágeno Tipo I/metabolismo , Fibroblastos/efeitos dos fármacos , Lignanas/farmacologia , Metaloproteinase 1 da Matriz/metabolismo , Substâncias Protetoras/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Colágeno Tipo I/genética , Fibroblastos/efeitos da radiação , Humanos , Metaloproteinase 1 da Matriz/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Myristica , RNA Mensageiro/metabolismo , Pele , Raios Ultravioleta
13.
Int J Mol Sci ; 13(1): 994-1005, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22312299

RESUMO

Obesity, a chronic metabolic disorder, is characterized by enlarged fat mass and dysregulation of lipid metabolism. The medicinal plant, Boesenbergia pandurata (Roxb.) Schltr., has been reported to possess anti-oxidative and anti-inflammatory properties; however, its anti-obesity activity is unexplored. The present study was conducted to determine whether B. pandurata extract (BPE), prepared from its rhizome parts, attenuated high-fat diet (HFD)-induced obesity in C57BL/6J mice. The molecular mechanism was investigated in 3T3-L1 adipocytes and HepG2 human hepatoma cells. BPE treatment decreased triglyceride accumulation in both 3T3-L1 adipocytes and HepG2 hepatocytes by activating AMP-activated protein kinase (AMPK) signaling and regulating the expression of lipid metabolism-related proteins. In the animal model, oral administration of BPE (200 mg/kg/day for 8 weeks) significantly reduced HFD-induced body weight gain without altering the amount of food intake. In addition, elevated serum levels of total cholesterol, low-density lipoprotein cholesterol, and triglycerides were suppressed by BPE administration. Fat pad masses were reduced in BPE-treated mice, as evidenced by reduced adipocyte size. Furthermore, BPE protected against the development of nonalcoholic fatty liver by decreasing hepatic triglyceride accumulation. BPE also activated AMPK signaling and altered the expression of lipid metabolism-related proteins in white adipose tissue and liver. Taken together, these findings indicate that BPE attenuates HFD-induced obesity by activating AMPK and regulating lipid metabolism, suggesting a potent anti-obesity agent.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Fármacos Antiobesidade/farmacologia , Dieta Hiperlipídica , Metabolismo dos Lipídeos/efeitos dos fármacos , Obesidade/etiologia , Extratos Vegetais/farmacologia , Zingiberaceae/química , Células 3T3-L1 , Animais , Fármacos Antiobesidade/química , Colesterol/sangue , Ingestão de Alimentos/efeitos dos fármacos , Células Hep G2 , Humanos , Lipoproteínas LDL/sangue , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Extratos Vegetais/química , Rizoma/química , Rizoma/metabolismo , Triglicerídeos/sangue , Triglicerídeos/metabolismo , Aumento de Peso/efeitos dos fármacos , Zingiberaceae/metabolismo
14.
Food Sci Biotechnol ; 31(10): 1309-1313, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35992318

RESUMO

Although xanthorrhizol, a sesquiterpenoid oil obtained from the rhizome of Curcuma xanthorrhiza Roxb., known as Java turmeric, has many pharmacological effects, its pharmacokinetics remain unclear. Therefore, we investigated the pharmacokinetics of xanthorrhizol in mice and rats. Xanthorrhizol was administered intravenously and orally to mice, while xanthorrhizol and a Java turmeric supercritical extract were administered orally to rats. The terminal half-life (t1/2), clearance, and absolute bioavailability (BA) of xanthorrhizol in mice were almost 8 h, 6.5 L/h/kg, and 10.2%, respectively. In comparison, the clearance of xanthorrhizol was 3-fold higher in rats than mice. The absolute BAs of xanthorrhizol in rats were 12.9% and 13.4% after oral administration of xanthorrhizol and a supercritical extract, respectively. Our results regarding the pharmacokinetics of xanthorrhizol could guide the conversion of intravenous and oral doses, and help identify the optimal maintenance doses of xanthorrhizol and the extract for desirable pharmacodynamic effects.

15.
Biochem Biophys Res Commun ; 411(1): 219-25, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21741367

RESUMO

The fruits of Piper retrofractum Vahl. have been used for their anti-flatulent, expectorant, antitussive, antifungal, and appetizing properties in traditional medicine, and they are reported to possess gastroprotective and cholesterol-lowering properties. However, their anti-obesity activity remains unexplored. The present study was conducted to isolate the anti-obesity constituents from P. retrofractum Vahl. and evaluate their effects in high-fat diet (HFD)-induced obese mice. Piperidine alkaloids from P. retrofractum Vahl. (PRPAs), including piperine, pipernonaline, and dehydropipernonaline, were isolated as the anti-obesity constituents through a peroxisome proliferator-activated receptor δ (PPARδ) transactivation assay. The molecular mechanism was investigated in 3T3-L1 adipocytes and L6 myocytes. PRPA treatment activated AMP-activated protein kinase (AMPK) signaling and PPARδ protein and also regulated the expression of lipid metabolism-related proteins. In the animal model, oral PRPA administration (50, 100, or 300mg/kg/day for 8weeks) significantly reduced HFD-induced body weight gain without altering the amount of food intake. Fat pad mass was reduced in the PRPA treatment groups, as evidenced by reduced adipocyte size. In addition, elevated serum levels of total cholesterol, low-density lipoprotein cholesterol, total lipid, leptin, and lipase were suppressed by PRPA treatment. PRPA also protected against the development of nonalcoholic fatty liver by decreasing hepatic triglyceride accumulation. Consistent with the in vitro results, PRPA activated AMPK signaling and altered the expression of lipid metabolism-related proteins in liver and skeletal muscle. Taken together, these findings demonstrate that PRPAs attenuate HFD-induced obesity by activating AMPK and PPARδ, and regulate lipid metabolism, suggesting their potential anti-obesity effects.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Alcaloides/administração & dosagem , Fármacos Antiobesidade/administração & dosagem , Dieta/efeitos adversos , Gorduras na Dieta/agonistas , Obesidade/prevenção & controle , Piper/química , Piperidinas/administração & dosagem , Células 3T3 , Adiposidade/efeitos dos fármacos , Alcaloides/isolamento & purificação , Animais , Células COS , Chlorocebus aethiops , Gorduras na Dieta/administração & dosagem , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , PPAR delta/metabolismo , Piperidinas/isolamento & purificação , Ratos , Aumento de Peso/efeitos dos fármacos
16.
Exp Dermatol ; 20(5): 445-7, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21426409

RESUMO

Melanin protects the skin against ultraviolet radiation (UVR) and diverse free radicals. Agents that increase melanin synthesis in melanocytes may reduce UVR-induced skin damage and skin cancer. In the present study, we evaluated the effects of 5,7-dimethoxyflavone (5,7-DMF) on melanogenic protein expression and signalling pathways. We found that 5,7-DMF significantly increased melanin content by upregulating microphthalmia-associated transcription factor and related melanogenic proteins. Additionally, 5,7-DMF increased cAMP levels, which activates a cascade of reactions, such as cAMP responsive element-binding protein and Akt/glycogen synthase kinase-3ß (GSK-3ß) signalling. Thus, 5,7-DMF may be an effective pigmentation stimulator for photoprotection and hypopigmentation disorders.


Assuntos
AMP Cíclico/metabolismo , Flavonoides/farmacologia , Melaninas/biossíntese , Melanoma Experimental/metabolismo , Transdução de Sinais/fisiologia , Animais , Linhagem Celular Tumoral , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Oxirredutases Intramoleculares/metabolismo , Isoquinolinas/farmacologia , Camundongos , Fator de Transcrição Associado à Microftalmia/metabolismo , Monofenol Mono-Oxigenase/metabolismo , Oxirredutases/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , alfa-MSH/farmacologia
17.
Med Mycol ; 49(1): 1-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20560862

RESUMO

The formation of Candida biofilms has important clinical ramifications, because these biofilms exhibit increased resistance to conventional antifungal therapies. The aim of this study was to investigate the activity of xanthorrhizol on biofilms produced by non-C. albicans Candida (NCAC) species, including C. glabrata, C. guilliermondii, and C. parapsilosis. NCAC biofilms were generated in flat-bottom 96-well microtiter plates and quantified using the XTT (2, 3 - bis (2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenyl amino) carbonyl]-2H-tetrazolium hydroxide) reduction assay. The NCAC biofilms at adherent, intermediate, and mature growth phases were treated with 0.5-512 µg/ml of xanthorrhizol for 24 h. The ranges of sessile minimum inhibitory concentrations (SMICs) of xanthorrhizol against C. glabrata, C. guilliermondii, and C. parapsilosis biofilms were 8-32 µg/ml, 8-16 µg/ml, and 8-64 µg/ml, respectively. Xanthorrhizol affected cell density that had an indirect effect on the biofilm OD(490). The compound eradicated the viable cells of the C. glabrata and C. parapsilosis biofilms at the adherent growth phase at 16 µg/ml and that of C. guilliermondii at 8 µg/ml. Treatment with 128 µg/ml of xanthorrhizol reduced the OD(490) of C. glabrata, C. guilliermondii, and C. parapsilosis biofilms at the mature growth phase by 77.8%, 88.5%, and 64.5%, respectively. These results indicate that xanthorrhizol exhibits potent activity against NCAC biofilms in vitro. Therefore, xanthorrhizol has potential therapeutic value in treating biofilm-associated NCAC infections and should be further evaluated in vivo.


Assuntos
Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Candida/efeitos dos fármacos , Fenóis/farmacologia , Biofilmes/crescimento & desenvolvimento , Candida/fisiologia , Humanos , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Oxirredução , Coloração e Rotulagem/métodos , Sais de Tetrazólio/metabolismo
18.
Biol Pharm Bull ; 34(5): 748-54, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21532167

RESUMO

Skin pigmentation is the result of melanosome transfer from melanocytes to keratinocytes. Protease-activated receptor-2 (PAR-2) is a key mediator of melanosome transfer, which occurs as the melanocyte extends its dendrite toward surrounding keratinocytes that take up melanosomes by phagocytosis. We investigated the effects of macelignan isolated from Myristica fragrans HOUTT. (nutmeg) on melanosome transfer and the regulation of PAR-2 in human keratinocytes (HaCaT). HaCaT cells stimulated by the PAR-2-activating peptide Ser-Leu-Ile-Gly-Arg-Leu-NH2 (SLIGRL) were treated with macelignan; PAR-2 expression was then determined by reverse transcription-polymerase chain reaction (RT-PCR), Western blot, and immunocytochemistry. We evaluated the effects of macelignan on calcium mobilization and keratinocyte phagocytosis. In addition, B16F10 melanoma cells and keratinocytes were co-cultured to assess the effects of macelignan on prostaglandin E2 (PGE2) secretion and subsequent dendrite formation. Macelignan decreased HaCaT PAR-2 mRNA and protein levels in a dose-dependent manner. Furthermore, macelignan markedly reduced intracellular calcium mobilization and significantly downregulated keratinocyte phagocytosis, as shown by decreased ingestion of Escherichia coli bioparticles and fluorescent microspheres. In co-culture experiments, macelignan reduced keratinocyte PGE2 secretion, thereby preventing dendrite formation in B16F10 melanoma cells compared with SLIGRL-treated controls. Macelignan inhibits melanosome transfer by downregulating PAR-2, thereby reducing keratinocyte phagocytosis and PGE2 secretion, which in turn inhibits dendrite formation in B16F10 melanoma cells. Taken together, our findings suggest that macelignan could be used as a natural depigmenting agent to ameliorate hyperpigmentation.


Assuntos
Queratinócitos/efeitos dos fármacos , Lignanas/farmacologia , Melanossomas/efeitos dos fármacos , Receptor PAR-2/fisiologia , Animais , Sequência de Bases , Western Blotting , Linhagem Celular , Primers do DNA , Humanos , Imuno-Histoquímica , Queratinócitos/metabolismo , Melanossomas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Biol Pharm Bull ; 34(10): 1628-30, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21963507

RESUMO

Hepatic lipid accumulation is a major risk factor for dyslipidemia, nonalcoholic fatty liver disease, and insulin resistance. The present study was conducted to evaluate hypolipidemic effects of meso-dihydroguaiaretic acid (MDA), anti-oxidative and anti-inflammatory compound isolated from the Myristica fragrans HOUTT., by oil red O staining, reverse transcription-polymerase chain reaction (RT-PCR), and Western blot. MDA significantly inhibited insulin-induced hepatic lipid accumulation in a dose-dependent manner. The lipid-lowering effect of MDA was accompanied by increased expression of proteins involved in fatty acid oxidation and decreased expression of lipid synthetic proteins. In addition, MDA activated AMP-activated protein kinase (AMPK) as determined by phosphorylation of acetyl-CoA carboxylase (ACC), a downstream target of AMPK. The effects of MDA on lipogenic protein expression were suppressed by pretreatment with compound C, an AMPK inhibitor. Taken together, these findings show that MDA inhibits insulin-induced lipid accumulation in human HepG2 cells by suppressing expression of lipogenic proteins through AMPK signaling, suggesting a potent lipid-lowering agent.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Inibidores Enzimáticos/farmacologia , Guaiacol/análogos & derivados , Hipolipemiantes/farmacologia , Lignanas/farmacologia , Myristica , Pirazóis/farmacologia , Pirimidinas/farmacologia , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Acetil-CoA Carboxilase/metabolismo , Técnicas de Cultura de Células , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Dislipidemias/patologia , Ativação Enzimática/efeitos dos fármacos , Fígado Gorduroso/patologia , Guaiacol/farmacologia , Células Hep G2 , Humanos , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/fisiologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Terapia de Alvo Molecular , Hepatopatia Gordurosa não Alcoólica , Fosforilação/efeitos dos fármacos , Fitoterapia , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia
20.
Phytother Res ; 25(12): 1891-4, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21544886

RESUMO

Ultraviolet B (UVB) radiation induces photoaging by upregulating the expression of matrix metalloproteinase (MMP) and decreasing collagen synthesis in human skin cells. This study evaluated the effects of licarin E isolated from mace, the aril of Myristica fragrans Houtt., on MMP-1 and type-1 procollagen levels in UVB-irradiated human skin fibroblasts. Powdered mace extracted with 95% ethanol was used and licarin E isolated by preparative high-performance liquid chromatography. In addition, western blot analysis, reverse transcription PCR and electrophoretic mobility shift assay were used to evaluate the effects of licarin E and its molecular mechanism. It was found that licarin E attenuated UVB-induced MMP-1 expression by inactivating mitogen-activated protein kinases (MAPKs), thereby inhibiting activator protein 1. Licarin E also increased type-1 procollagen expression by stimulating transforming growth factor ß (TGFß)/Smad signaling. The findings show that licarin E positively regulates the expression of MMP-1 and type-1 procollagen in UVB-irradiated human skin fibroblasts through MAPK and TGFß signaling, suggesting its potential as a potent antiphotoaging agent.


Assuntos
Fibroblastos/efeitos dos fármacos , Lignanas/farmacologia , Metaloproteinase 1 da Matriz/metabolismo , Pró-Colágeno/metabolismo , Linhagem Celular , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Humanos , Lignanas/isolamento & purificação , Myristica/química , Pele/citologia , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA