RESUMO
The sedimentation of organic carbon in the Ulleung Basin, in the southwestern East Sea (Japan Sea) was investigated using radiocarbon and sterols. The accumulation rates of organic carbon and the contents of brassicasterol and dinosterol were higher on the slope than in the central basin, reflecting the surface water productivity, whereas cholesterol showed similar or higher contents in the central basin. The coprostanol concentration in surface sediments reflected the dispersion of sewage dumped in this region. The vertical distribution showed that the coprostanol concentration was the highest in the top 5-cm layer near the Korea Strait, close to one of the two dumping sites. A high coprostanol concentration was also found near the coast further north, where the content peaked at â¼10 cm depth. The vertical distribution of coprostanol helped to estimate the sediment accumulation rate at sites where radiocarbon gradient was too small or the values were too variable.
Assuntos
Monitoramento Ambiental , Sedimentos Geológicos , Esgotos , Esteróis , Sedimentos Geológicos/química , Esgotos/química , Esteróis/análise , Oceanos e Mares , Japão , Poluentes Químicos da Água/análiseRESUMO
The removal mechanism of refractory deep-ocean dissolved organic carbon (deep-DOC) is poorly understood. The Amundsen Sea Polynya (ASP) serves as a natural test basin for assessing the fate of deep-DOC when it is supplied with a large amount of fresh-DOC and exposed to strong solar radiation during the polynya opening in austral summer. We measured the radiocarbon content of DOC in the water column on the western Amundsen shelf. The radiocarbon content of DOC in the surface water of the ASP reflected higher primary production than in the region covered by sea ice. The radiocarbon measurements of DOC, taken two years apart in the ASP, were different, suggesting rapid cycling of DOC. The increase in DOC concentration was less than expected from the observed increase in radiocarbon content from those at the greatest depths. Based on a radiocarbon mass balance, we show that deep-DOC is consumed along with fresh-DOC in the ASP. Our observations imply that water circulation through the surface layer, where fresh-DOC is produced, may play an important role in global DOC cycling.
RESUMO
The Changjiang River is one of the main nutrient sources in the northwestern Pacific marginal seas. However, most of the previous studies have neglected the long-range transport (>200 km) of riverine nutrients since they are rapidly consumed. In this study, we examined the long-range transport (200-800 km) of nutrients in the surface layer during the summer of 2017. The plots of nutrients against salinity display that dissolved organic nitrogen (DON) was conservative over ~800 km, while more than 99% of the dissolved inorganic nitrogen (DIN) was removed within 200 km. As a result, in the study region, DON concentrations (avg. 7.0 ± 1.3 µM), which are minor in the river water, were much higher than DIN concentrations (avg. 0.28 ± 0.26 µM). Both nutrients, N and P, showed a similar pattern. Our results suggest that dissolved organic nutrients play a critical role on the long-range transport of riverine nutrients in surface waters and subsequent ecosystem changes.
Assuntos
Nitrogênio/análise , Compostos Orgânicos/análise , Fósforo/análise , Rios/química , Poluentes Químicos da Água/análise , Geografia , Oceanos e Mares , SalinidadeRESUMO
Concentrations of polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and polybrominated diphenyl ethers (PBDEs) were measured in 32 species inhabiting the Yellow Sea to assess their bioaccumulation potentials. The concentrations in these samples were lower than those reported for other countries or locations. Relatively high levels of BDE 209 in biota suggest an ongoing source of deca-BDE technical mixing within the Yellow Sea. The accumulation profiles of PCBs were uniform between species, but the concentrations of OCPs and PBDEs varied widely. Pelagic and benthic food-chain components were separated by their δ(13)C values. Significant positive correlations between δ(15)N and PCB 153, PCB 138, p,p'-DDE, oxy-chlordane, and trans-nonachlordane were found only for pelagic consumers, indicating that the pelagic food chain is an important bioaccumulation pathway for selected PCB and OCP compounds. The other compounds did not show any biomagnification through benthic and pelagic food chains, suggesting the lower bioaccumulation potentials of these contaminants.
Assuntos
Organismos Aquáticos/metabolismo , Monitoramento Ambiental , Cadeia Alimentar , Éteres Difenil Halogenados/análise , Hidrocarbonetos Clorados/análise , Bifenilos Policlorados/análise , Poluentes Químicos da Água/análise , Animais , Retardadores de Chama/análise , Retardadores de Chama/metabolismo , Éteres Difenil Halogenados/metabolismo , Hidrocarbonetos Clorados/metabolismo , Praguicidas/análise , Bifenilos Policlorados/metabolismo , Poluentes Químicos da Água/metabolismoRESUMO
The composition and formation mechanisms of the uncharacterized fraction of oceanic particulate organic carbon (POC) are not well understood. We isolated biologically important compound classes and the acid-insoluble fraction, a proxy of the uncharacterized fraction, from sinking POC in the deep Northeast Pacific and measured carbon isotope ratios to constrain the source(s) of the uncharacterized fraction. Stable carbon and radiocarbon isotope signatures of the acid-insoluble fraction were similar to those of the lipid fraction, implying that the acid-insoluble fraction might be composed of selectively accumulated lipid-like macromolecules.