Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Opt Express ; 30(18): 32031-32050, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36242273

RESUMO

The OH radical concentration was measured by applying tunable diode laser absorption spectroscopy, which is an in situ optical method. An optical absorption region (P7.5ff transition at 1502.7 nm) of the OH radical was selected in the near-infrared range to measure the OH radicals quantitatively in premixed CH4/air flames. An improved direct absorption spectroscopy (DAS) method based on wavelength division multiplexing was proposed to extract the H2O absorption signal that interfered with the OH light absorption signal, and the integral intensity of OH* chemiluminescence was compared to the measured OH radical concentration based on the improved DAS method.

2.
Indoor Air ; 32(11): e13173, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36437657

RESUMO

Indoor PM2.5 in apartments must be effectively managed to minimize adverse impacts on human health. Cooking is the one of the main PM2.5 sources in apartments, and indoor air quality (IAQ) management methods (natural ventilation, mechanical ventilations, range hoods, and air purifiers) are typically used to reduce PM2.5 generated during cooking. For effective control of indoor PM2.5 , prediction of PM2.5 reduction for various IAQ management methods is necessary. This study carefully predicted indoor PM2.5 concentrations in an apartment when IAQ management methods were applied separately and/or in combination during cooking. The infiltration and exfiltration were verified by comparing the experimental results of CO2 concentration with those predicted with or without mechanical ventilation. The deposition rate for PM2.5 generated by cooking was also derived by comparing the experimental PM2.5 changes with the predicted values for PM2.5 natural decay. Through this method, effective PM2.5 control ways during cooking in apartments can be proposed, such as natural ventilation with a range hood for 30 min and then the operation of an air purifier for 30 min. Additionally, if this prediction is combined with energy consumption, it will be possible to propose the most energy-efficient indoor PM2.5 control methods for various seasons and outdoor conditions.


Assuntos
Poluição do Ar em Ambientes Fechados , Humanos , Poluição do Ar em Ambientes Fechados/análise , Culinária , Material Particulado/análise , República da Coreia
3.
J Aerosol Sci ; 107: 31-40, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-32226115

RESUMO

The effect of corona discharge-generated air ions on the filtration of aerosolized bacteriophage MS2 was studied. A carbon-fiber ionizer was installed upstream of a medium-efficiency air filter to generate air ions, which were used to charge the virus aerosols and increase their filtration efficiency. After the virus aerosols were captured by the filter for a certain time interval, they were exposed to a newly incoming air ion flow. Captured virus particles were detached from the filter by sonication, and their antiviral efficiency due to air ions was calculated by counting the plaque-forming units. The antiviral efficiency increased with ion exposure time and ion concentration. When the concentration of positive air ions was 107 ions/cm3, the antiviral efficiencies were 46.1, 78.8, and 83.7% with exposure times of 15, 30, and 45 min, respectively. When the ionizer was operated in a bipolar mode, the number concentrations of positive and negative ions were 6.6×106 and 3.4×106 ions/cm3, respectively, and the antiviral efficiencies were 64.3, 89.1, and 97.4% with exposure times of 15, 30, and 45 min, respectively. As a quantitative parameter for the performance evaluation of air ions, the susceptibility constant of bacteriophage MS2 to positive, negative, bipolar air ions was calculated as 5.5×10-3, 5.4×10-3 and 9.5×10-3, respectively. These susceptibility constants showed bipolar ion treatment was more effective about 1.7 times than unipolar ion treatment.

4.
Carbon N Y ; 75: 401-410, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32226084

RESUMO

Carbon nanotubes (CNTs) were coated on a sample of glass fiber air filter medium at atmospheric pressure and room temperature using electro-aerodynamic deposition (EAD). In the EAD method, CNTs (diameter: 50 nm, length: 2-3 µm) were aerosolized, electrically charged, and injected through a nozzle. A voltage was applied externally between the ground nozzle and a planar electrode on which the sample was located. The charged CNTs were deposited on the sample in a vertically standing posture even at a low flow velocity. Before the deposition experiment, a calculation was performed to determine the applied voltage by simulating the electric field, flow field, and particle trajectory. Using CNT-coated filter samples, virus aerosol filtration and anti-viral tests were carried out using the aerosol number counting method and the plaque counting method, respectively. For this purpose, bacteriophage MS2 was aerosolized with an atomizer. The particle filtration efficiency was increased to 33.3% in the most penetration particle size zone (100 nm) and the antiviral efficiency of the CNT filter was 92% when the coating areal density was 1.5 × 109 #/cm2. The susceptibility constant of virus to CNTs was 0.2 cm2/µg.

5.
J Hazard Mater ; 478: 135491, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39182291

RESUMO

Due to adverse effects of viral outbreaks on human health, accurate detection of airborne pathogens is essential. Among many methods available for bioaerosol sampling, electrostatic precipitation (ESP) has been used to directly collect bioaerosols as hydrosols. The performance of an ESP sampler depends on its design, operational and environmental parameters such as air relative humidity (RH), air temperature, sampling liquid type and liquid temperature. Thus, it is essential to identify and maintain optimal conditions throughout sampling process to operate the sampler at its highest capacity. This study provides crucial insights into parameters that affect the collection efficiency of the aerosol-to-hydrosol ESP sampler and its virus recovery. The results indicate that air temperature does not affect collection efficiency, meanwhile, air RH, sampling liquid temperature, and salt concentration are the main parameters that significantly affect collection efficiency. Likewise, when deionized water is used as sampling liquid, hydrogen peroxide concentration increases proportionally with increasing air RH, resulting in significant decrease of virus viability. Consequently, for ESP samplers similar to our study, the following conditions are recommended: air RH of 55-65%, air and sampling liquid temperature of 37 °C, and a mixture of 10-20 mM ascorbic acid in PBS as sampling liquid.


Assuntos
Aerossóis , Microbiologia do Ar , Umidade , Eletricidade Estática , Temperatura , Monitoramento Ambiental/métodos , Peróxido de Hidrogênio/química , Vírus/isolamento & purificação
6.
Environ Sci Pollut Res Int ; 31(10): 15580-15596, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38296930

RESUMO

Non-thermal plasma (NTP) efficiently regenerates diesel particulate filters by oxidizing carbon soot (CS) at low temperatures. However, numerical studies on the spatial characteristics of CS oxidation by NTP are scarce. In addition, the influence of background gas heating on the CS-oxidizing performance by NTP remains inadequately understood. This research investigates the impact of gas temperature (323-573 K) on heterogeneous CS oxidation using NTP in a two-dimensional configuration. The results indicate that CS is mainly oxidized by [Formula: see text], [Formula: see text], and [Formula: see text] during NTP treatment. The energy efficiency of CS removal by NTP ranges from 0.1 to 2.6 g kWh-1 for varying gas temperature and applied voltage, consistent with previous research. Higher gas temperatures enhance both CS removal rate and efficiency, whereas higher applied voltages enhance rate at the expense of efficiency. The study also assesses energy conversion efficiency from electrical power input to chemical bonding energy during CS oxidation by NTP, yielding 0.03 to 0.23% efficiency for the considered gas temperature and voltage ranges, with higher temperatures leading to better efficiency.


Assuntos
Carbono , Emissões de Veículos , Emissões de Veículos/análise , Temperatura , Fuligem , Oxirredução
7.
J Hazard Mater ; 477: 135180, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39067289

RESUMO

Reliable and sensitive virus detection is essential to prevent airborne virus transmission. The polymerase chain reaction (PCR) is one of the most compelling and effective diagnostic techniques for detecting airborne pathogens. However, most PCR diagnostics rely on thermocycling, which involves a time-consuming Peltier block heating methodology. Plasmonic PCR is based on light-driven photothermal heating of plasmonic nanostructures to address the key drawbacks of traditional PCR. This study introduces a methodology for plasmonic PCR detection of air-sampled influenza virus (H1N1). An electrostatic air sampler was used to collect the aerosolized virus in a carrier liquid for 10 min. Simultaneously, the viruses collected in the liquid were transferred to a tube containing gold (Au) nanorods (aspect ratio = 3.6). H1N1 viruses were detected in 12 min, which is the total time required for reverse transcription, fast thermocycling via plasmonic heating through gold nanorods, and in situ fluorescence detection. This methodology showed a limit of detection of three RNA copies/µL liquid for H1N1 influenza virus, which is comparable to that of commercially available PCR devices. This methodology can be used for the rapid and precise identification of pathogens on-site, while significantly reducing the time required for monitoring airborne viruses.


Assuntos
Microbiologia do Ar , Ouro , Vírus da Influenza A Subtipo H1N1 , Nanotubos , Reação em Cadeia da Polimerase , Ouro/química , Nanotubos/química , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A Subtipo H1N1/genética , Reação em Cadeia da Polimerase/métodos , RNA Viral/análise , RNA Viral/isolamento & purificação , Monitoramento Ambiental/métodos
8.
J Hazard Mater ; 474: 134673, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38850948

RESUMO

A novel methodology was presented for determining the representative effective density of aerosols of a given size distribution, using a lab-made two-stage low-pressure impactor and an aerosol electrometer. Electrical currents upstream (Imeasured, up) and downstream (Imeasured, down) of the 2nd stage of the impactor were measured using a corona charger and the aerosol electrometer. In addition, the electrical currents upstream (Icalculated, up) and downstream (Icalculated, down) of the 2nd stage of the impactor were calculated using the aerosol charging theory. Then, the difference between the ratio of Imeasured,down to Imeasured,up and the ratio of Icalculated,down to Icalculated,up was iterated with varying the presumed effective density until the difference was smaller than 0.001. The methodology was validated using poly-disperse sodium chloride (NaCl) particles. The effective densities of ambient aerosols were then obtained from indoor and outdoor environments and compared with those calculated from a relation between mobility (scanning mobility particle sizer (SMPS) measurement) and aerodynamic (electrical low-pressure impactor (ELPI) measurement) diameters. Compared to the effective densities obtained with SMPS and ELPI measurements, the effective densities obtained using the methodology introduced in this paper differed within 10 % deviation, depending on measurement location. After an averaged effective density for given size distribution is obtained at a measurement location, the number-based size distribution can be easily converted to mass-based size distribution using the representative effective density.

9.
J Hazard Mater ; 479: 135544, 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39216245

RESUMO

Accurate airborne virus monitoring is important for preventing the spread of infectious diseases. Although standard reverse transcription-quantitative polymerase chain reaction (RT-qPCR) can efficiently detect viral ribonucleic acid (RNA), it cannot determine whether the RNA is associated with active (infectious) or inactive (non-infectious) viruses. Plaque assay is the gold standard for determining viral infectivity but is laborious and time-consuming. This study explored the viral infectivity of H1N1 influenza virus and human coronavirus (HCoV-229E) using capsid integrity RT-qPCR, where virus samples were pretreated with reagents penetrating viruses with damaged capsids, impeding amplification by binding to their RNA. Therefore, the amplified signals corresponded solely to active viruses with undamaged capsids. Propidium monoazide (PMA) and platinum (IV) chloride (PtCl4) were used to investigate the effects of reagent concentration. Feasibility tests revealed that PtCl4 was more efficient than PMA, with optimal concentrations of 125-250 µM and 250-500 µM for H1N1 influenza virus and HCoV-229E, respectively. The results of percentage of active virus showed that capsid integrity RT-qPCR provided a trend similar to that of plaque assay, indicating an accurate measure of viral infectivity. Virus sampling in the laboratory and field highlighted the precision of this methodology for determining viral infectivity. Therefore, this methodology enables rapid and accurate detection of infectious airborne H1N1 influenza virus and HCoV-229E, allowing swift response to outbreaks.

10.
Biosens Bioelectron ; 264: 116658, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39137520

RESUMO

To facilitate rapid monitoring of airborne viruses, they must be collected with high efficiency and concentrated in a small volume of a liquid sample. In addition, the development of low-cost miniaturized samplers is essential for multipoint monitoring. Thus, in an attempt to fulfill these requirements, this study developed a microfluidic condensation bioaerosol sampler (MCBS). The developed sampler comprised two parts: a virus growth section and a virus droplet-to-liquid sample conversion section, each of which was fabricated on a chip using microfluidic technology. The condensation nucleus growth technique used in the virus growth section grew nanometer-sized airborne viruses into micro-sized droplets, making it possible to collection of viruses easier and with high efficiency. In addition, the virus droplet-to-liquid sample conversion section controlled the transport of droplets based on electrowetting technology. This enabled the collected airborne viruses to be concentrated in tens of microliters of the liquid sample. To evaluate the performance of both the sections, the virus dropletization, virus collection efficiency, and virus droplet-to-liquid sample conversion efficiency were evaluated through quantitative experiments. H1N1 and HCOV-229E viruses were used to conduct quantitative experiments on MCBS. We could obtain virus liquid samples with at 72.8- and 89.9-times higher concentration through 1:1 evaluation with a commercial sampler. Thus, the developed sampler facilitated efficient collection and concentration of airborne viruses in a compact, cost-effective manner. This is expected to facilitate rapid and accurate multipoint monitoring of viral aerosols.


Assuntos
Aerossóis , Microbiologia do Ar , Técnicas Biossensoriais , Desenho de Equipamento , Aerossóis/análise , Técnicas Biossensoriais/instrumentação , Humanos , Dispositivos Lab-On-A-Chip , Microfluídica/instrumentação , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Técnicas Analíticas Microfluídicas/instrumentação
11.
J Hazard Mater ; 465: 133249, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38154189

RESUMO

The severe acute respiratory syndrome (SARS-CoV-2) outbreak triggered global concern and emphasized the importance of virus monitoring. During a seasonal influenza A outbreak, relatively low concentrations of 103-104 viral genome copies are available per 1 m3 of air, which makes detection and monitoring very challenging because the limit of detection of most polymerase chain reaction (PCR) devices is approximately 103 viral genome copies/mL. In response to the urgent need for the rapid detection of airborne coronaviruses and influenza viruses, an electrostatic aerosol-to-hydrosol (ATH) sampler was combined with a concanavalin A (ConA)-coated high-throughput microfluidic chip. The samples were then used for PCR detection. The results revealed that the enrichment capacity of the ATH sampler was 30,000-fold for both HCoV-229E and H1N1 influenza virus, whereas the enrichment capacities provided by the ConA-coated microfluidic chip were 8-fold and 16-fold for HCoV-229E and H1N1 virus, respectively. Thus, the total enrichment capacities of our combined ATH sampler and ConA-coated microfluidic chip were 2.4 × 105-fold and 4.8 × 105-fold for HCoV-229E and H1N1 virus, respectively. This methodology significantly improves PCR detection by providing a higher concentration of viable samples.


Assuntos
Coronavirus Humano 229E , Vírus da Influenza A Subtipo H1N1 , Concanavalina A/genética , Microfluídica , Vírus da Influenza A Subtipo H1N1/genética , Aerossóis e Gotículas Respiratórios , Coronavirus Humano 229E/genética , Reação em Cadeia da Polimerase
12.
J Breath Res ; 18(4)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38968933

RESUMO

Although the associations between a patient's body mass index (BMI) and metabolic diseases, as well as their breath test results, have been studied, the relationship between breath hydrogen/methane levels and metabolic diseases needs to be further clarified. We aimed to investigate how the composition of exhaled breath gases relates to metabolic disorders, such as diabetes mellitus, dyslipidemia, hypertension, and nonalcoholic fatty liver disease (NAFLD), and their key risk factors. An analysis was performed using the medical records, including the lactulose breath test (LBT) data of patients who visited the Ajou University Medical Center, Suwon, Republic of Korea, between January 2016 and December 2021. The patients were grouped according to four different criteria for LBT hydrogen and methane levels. Of 441 patients, 325 (72.1%) had positive results for methane only (hydrogen < 20 parts per million [ppm] and methane ⩾ 3 ppm). BMIs and NAFLD prevalence were higher in patients with only methane positivity than in patients with hydrogen and methane positivity (hydrogen ⩾ 20 ppm and methane ⩾ 3 ppm). According to a multivariate analysis, the odds ratio of only methane positivity was 2.002 (95% confidence interval [CI]: 1.244-3.221,P= 0.004) for NAFLD. Our results demonstrate that breath methane positivity is related to NAFLD and suggest that increased methane gas on the breath tests has the potential to be an easily measurable biomarker for NAFLD diagnosis.


Assuntos
Testes Respiratórios , Metano , Hepatopatia Gordurosa não Alcoólica , Humanos , Testes Respiratórios/métodos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Metano/análise , Feminino , Masculino , Pessoa de Meia-Idade , República da Coreia/epidemiologia , Adulto , Índice de Massa Corporal , Hidrogênio/análise , Idoso , Fatores de Risco , Expiração
13.
Small ; 9(13): 2325-30, 2013 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-23371387

RESUMO

An electrohydrodynamic atomization (EHDA) system that generates an electrospray can achieve particle formation and encapsulation by accumulating an electric charge on liquid flowing out from the nozzle. A novel coaxial EHDA system for continuous fabrication of water-stable magnetic nanoparticles (MNPs) is established, based on a cone-jet mode of electrospraying. Systemic variables, such as flow rates from dual nozzles and inducing voltages, are controlled to enable the preparation of water-soluble MNPs coated by polysorbate 80. The PEGylated MNPs exhibit water stability. The magnetic resonance imaging potential of these MNPs is confirmed by in vivo imaging using a gastric cancer xenograft mouse model. Thus, this advanced coaxial EHDA system demonstrates remarkable capabilities for the continuous encapsulation of MNPs to render them water-stable while preserving their properties as imaging agents.

14.
Clin Auton Res ; 23(6): 325-31, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24221882

RESUMO

OBJECTIVE: To examine the relationship between overweight combined with low muscle mass and the cardiac autonomic nervous system using heart rate variability (HRV) in healthy workers. METHODS: A total of 1,150 workers were included, with a mean age of 43.55 ± 11.45 years. The subjects were classified as low muscle mass if their appendicular skeletal muscle mass was below the 50th percentile of the study sample. Similarly, subjects were classified as overweight if their body mass index was above 25 kg/m(2). Electrocardiography recordings were obtained for 5 min, and the time-domain and frequency-domain indices of HRV were analyzed. RESULTS: Compared with the high muscle mass and non-overweight (HMM) group, the low-frequency power and the standard deviation of normal-to-normal intervals were significantly decreased in both the overweight and high muscle mass (OHMM) group and the overweight and low muscle mass (OLMM) group. The significantly decreased high-frequency (HF) power and square root of the mean squared differences of successive differences, which reflects efferent parasympathetic activity, was indicative of reduced parasympathetic modulation in the OHMM and OLMM groups. In addition, the OLMM group had a lower HF power than did the OHMM group. CONCLUSIONS: This study suggests that HRV is reduced in overweight combined with low muscle mass group than overweight and HMM group.


Assuntos
Sistema Nervoso Autônomo/fisiopatologia , Composição Corporal , Frequência Cardíaca/fisiologia , Músculo Esquelético , Sobrepeso/complicações , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sobrepeso/fisiopatologia
15.
Sci Total Environ ; 895: 165197, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37391139

RESUMO

Over the course of the COVID-19 pandemic, people have realized the importance of wearing a mask. However, conventional nanofiber-based face masks impede communication between people because of their opacity. Moreover, it remains challenging to achieve both high filtration performance and transparency through fibrous mask filters without using harmful solvents. Herein, scalable transparent film-based filters with high transparency and collection efficiency are fabricated in a facile manner by means of corona discharging and punch stamping. Both methods improve the surface potential of the film while the punch stamping procedure generates micropores in the film, which enhances the electrostatic force between the film and particulate matter (PM), thereby improving the collection efficiency of the film. Moreover, the suggested fabrication method involves no nanofibers and harmful solvents, which mitigates the generation of microplastics and potential risks for the human body. The film-based filter provides a high PM2.5 collection efficiency of 99.9 % while maintaining a transparency of 52 % at the wavelength of 550 nm. This enables people to distinguish the facial expressions of a person wearing a mask composed of the proposed film-based filter. Moreover, the results of durability experiments indicate that the developed film-based filter is anti-fouling, liquid-resistant, microplastic-free and foldability.

16.
Biosens Bioelectron ; 234: 115356, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37172362

RESUMO

The COVID-19 pandemic ignited massive research into the rapid detection of bioaerosols. In particular, nanotechnology-based detection strategies are proposed as alternatives because of issues in bioaerosol enrichment and lead time for molecular diagnostics; however, the practical implementation of such techniques is still unclear due to obstacles regarding the large research and development effort and investment for the validation. The use of adenosine triphosphate (ATP) bioluminescence (expressed as relative luminescence unit (RLU) per unit volume of air) of airborne particulate matter (PM) to determine the bacterial population as a representative of the total bioaerosols (viruses, bacteria, and fungi) has been raised frequently because of the high reponse speed, resolution, and compatibility with culture-based bioaerosol monitoring. On the other hand, additional engineering attempts are required to confer significance because of the size-classified (bioluminescence for different PM sizes) and specific (bioluminescence per unit PM mass) biological risks of air for providing proper interventions in the case of airborne transmission. In this study, disc-type impactors to cut-off aerosols larger than 1 µm, 2.5 µm, and 10 µm were designed and constructed to collect PM1, PM2.5, and PM10 on sampling swabs. This engineering enabled reliable size-classified bioluminescence signals using a commercial ATP luminometer after just 5 min of air intake. The simultaneous operations of a six-stage Andersen impactor and optical PM spectrometers were conducted to determine the correlations between the resulting RLU and colony forming unit (CFU; from the Andersen impactor) or PM mass concentration (deriving specific bioluminescence).


Assuntos
Técnicas Biossensoriais , COVID-19 , Humanos , Trifosfato de Adenosina/análise , Pandemias , Microbiologia do Ar , Técnicas Biossensoriais/métodos , COVID-19/diagnóstico , Aerossóis e Gotículas Respiratórios , Bactérias , Fungos , Monitoramento Ambiental/métodos , Tamanho da Partícula
17.
J Hazard Mater ; 445: 130458, 2023 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-36444810

RESUMO

The interest in removing contagious viruses from indoor air using ventilation and filtration systems is increasing rapidly because people spend most of the day indoors. The development of an effective platform to regenerate the antiviral function of air filters during use and safe abrogation of used filters containing infectious viruses is a challenging task, because an on-demand safe-by-design manufacture system is essential for in-place antiviral coatings, but it has been rarely investigated. With these considerations, an electrically operable dispenser was prepared for decorating continuous ultrafine Fe-Zn, Fe-Ag, or Fe-Cu particles (<5 nm) onto SiO2 nanobeads (ca. 130 nm) to form nanobulges (i.e., nanoroughness for engaging coronavirus spikes) in the aerosol state for 3 min direct deposition on the air filter surfaces. The resulting nanobulges were exposed to human coronaviruses (HCoV; surrogates of SARS-CoV-2) to assess antiviral function. The results were compared with similar-sized individual Zn, Ag, and Cu particles. The nanobulges exhibited comparable antiviral activity to Zn, Ag, and Cu particles while retaining biosafety in both in vitro and in vivo models because of the significantly smaller metallic fractions. This suggests that the bimetallic bulge structures generate reactive oxygen species and Fenton-mediated hydroxyl radicals for inactivating HCoV.


Assuntos
Filtros de Ar , Poluição do Ar em Ambientes Fechados , COVID-19 , Humanos , Dióxido de Silício , SARS-CoV-2 , COVID-19/prevenção & controle , Aerossóis e Gotículas Respiratórios , Antivirais , Poluição do Ar em Ambientes Fechados/análise
18.
J Hazard Mater ; 460: 132398, 2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37639787

RESUMO

Over the past few years, infections caused by airborne pathogens have spread worldwide, infecting several people and becoming an increasingly severe threat to public health. Therefore, there is an urgent need for developing airborne pathogen monitoring technology for use in confined environments to enable epidemic prevention. In this study, we designed a colorimetry-based bacterial detection platform that uses a clustered regularly interspaced short palindromic repeat-associated protein 12a system to amplify signals and a urease enzyme to induce color changes. Furthermore, we have developed a smartphone application that can distinguish colors under different illumination conditions based on the HSV model and detect three types of disease-causing bacteria. Even synthetic oligomers of a few picomoles of concentration and genomic DNA of airborne bacteria smaller than several nanograms can be detected with the naked eye and using color analysis systems. Furthermore, in the air capture model system, the bacterial sample generated approximately a 2-fold signal difference compared with that in the control group. This colorimetric detection method can be widely applied for public safety because it is easy to use and does not require complex equipment.


Assuntos
Colorimetria , Smartphone , Humanos , Bactérias/genética , Modelos Biológicos , Saúde Pública
19.
Sci Rep ; 12(1): 14252, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35995820

RESUMO

The unipolar saturation current limit ([Formula: see text]) gives an upper limit to the corona current that can be obtained from a unipolar corona discharge. Therefore, it implies a theoretical limit to the performance of unipolar corona discharge devices. However, it has not been widely used in practice because it is difficult to deal with complex discharge configurations in an analytical way. This study aims to establish and validate a numerical methodology to evaluate the maximum current, which numerically imitates the unipolar saturation current limit. It was shown that the maximum current has the same mathematical definition as the unipolar saturation current. For validation, the maximum current was compared with an analytical solution of the Poisson equation for the coaxial cylinders configuration. The differences between the maximum current and unipolar saturation current limit for the coaxial cylinders, pin-to-plane, and single wire-to-plane configurations were discussed in terms of the assumptions used in the semi-analytical derivation of the unipolar saturation current limit. The validated methodology was applied to a multiple wire-to-plane configuration, for which a semi-analytical expression of the unipolar saturation current limit has not yet been developed. The effects of geometric and operation parameters on the maximum currents of the multiple wire-to-plane configuration were analyzed. The results were regressed into a single formula.

20.
J Hazard Mater ; 424(Pt A): 127262, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34583159

RESUMO

Air purification through fiber-based filters has become a fundamental requirement for air contamination control. However, conventional filters depend on polymeric fibrous filters with adequate particulate matter removal ability but fewer degassing and biocidal effects. This study presents the photocatalytic volatile organic compound (VOC) oxidation and antimicrobial properties of zinc oxide (ZnO) nano-spines sprouted activated-carbon nanofibers (I@ZnO/ACNFs) and their potential for air contamination control and infection prevention. By developing a novel technique that can induce phase separation of inorganic salts during electrospinning, nanofibers with zinc (Zn) components concentrated on the surface could be synthesized. I@ZnO/ACNFs exhibit a surface densely covered with high aspect-ratio ZnO nano-spines with significant lethality to airborne pathogens and enhanced photocatalytic activity toward VOCs. Moreover, excellent adhesion stability of ZnO to ACNFs under rapid airflow was observed in I@ZnO/ACNFs. In combination with intriguing antimicrobial activity and strong VOC removal capability derived from their unique morphology, novel I@ZnO/ACNFs hold potential for airborne microbial disinfection, effective and sustainable VOC purification, and the design of photomicrobicidal and photocatalytic materials.


Assuntos
Nanofibras , Compostos Orgânicos Voláteis , Óxido de Zinco , Bactérias , Fibra de Carbono
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA