Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 110(24): 247201, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-25165955

RESUMO

We report the effective methods to induce weak ferromagnetism in pristine MoS2 persisting up to room temperature with the improved transport property, which would lead to new spintronics devices. The hydrogenation of MoS2 by heating at 300 °C for 1 h leads to the easy axis out of plane, while the irradiation of proton with a dose of 1 × 10(13) P/cm(2) leads to the easy axis in plane. The theoretical modeling supports such magnetic easy axes.

2.
Nanoscale ; 11(23): 11138-11144, 2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31107488

RESUMO

Engineering phase transitions or finding new polymorphs offers tremendous opportunities for developing functional materials. We reveal that the thermally driven desulfurization of single-crystalline MoS2 samples improves transport properties by reducing the band gap and further induces metallization. Semi-desulfurization, i.e., removal of the topmost S layer, results in the placement of the exposed Mo layers directly on top of the following sub-layers, together with the bottom S layer of the top layer. This homonuclear (AA) stacking derived from the AA' stacking of the hexagonal (2H) phase is retained even after further desulfurization of the remaining bottom S layer, i.e., full desulfurization of the top layer. Our findings fundamentally explain why the 2H phase of TMDs is characterized by AA' stacking.

3.
Sci Rep ; 6: 38730, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27974834

RESUMO

1 T phase incorporation into 2H-MoS2 via an optimal electron irradiation leads to induce a weak ferromagnetic state at room temperature, together with the improved transport property. In addition to the 1T-like defects, the electron irradiation on the cleaved MoS2 surface forms the concentric circle-type defects that are caused by the 2 H/1 T phase transition and the vacancies of the nearby S atoms of the Mo atoms. The electron irradiation-reduced bandgap is promising in vanishing the Schottky barrier to attaining spintronics device. The simple method to control and improve the magnetic and electrical properties on the MoS2 surface provides suitable ways for the low-dimensional device applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA