Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
mSphere ; 9(1): e0055723, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38085018

RESUMO

The N6-threonylcarbamoyl adenosine (t6A) tRNA modification is critical for ensuring translation fidelity across three domains of life. Our prior work highlighted the KEOPS complex, organized in a Pcc1-Kae1-Bud32-Cgi121 linear arrangement, not only serves an evolutionarily conserved role in t6A tRNA modification but also exerts diverse functional impacts on pathobiological characteristics in Cryptococcus neoformans, a leading cause of fungal meningitis worldwide. However, the extent to which the pleiotropic functions of the KEOPS complex are specifically tied to tRNA modification remains uncertain. To address this, we undertook a functional characterization of Sua5, responsible for generating the precursor threonylcarbamoyl-adenylate (TC-AMP) for t6A tRNA modification, using a reverse genetics approach. Comparative phenotypic analyses with KEOPS mutants revealed that Sua5 plays a vital role in multiple cellular processes, such as t6A tRNA modification, growth, sexual development, stress response, and virulence factor production, thus reflecting the multifaceted functions of the KEOPS complex. In support of this, sua5Δ bud32Δ double mutants showed phenotypes comparable to those of the corresponding single mutants. Intriguingly, a SUA5 allele lacking a mitochondria targeting sequence (SUA5MTSΔ) was sufficient to restore the wild-type phenotypes in the sua5Δ mutant, suggesting that Sua5's primary functional locus may be cytosolic, akin to the KEOPS complex. Further supporting this, the deletion of Qri7, a mitochondrial paralog of Kae1, had no discernible phenotypic impact on C. neoformans. We concluded that cytosolic t6A tRNA modifications, orchestrated by Sua5 and the KEOPS complex, are central to the regulation of diverse pathobiological functions in C. neoformans.IMPORTANCEUnderstanding cellular functions at the molecular level is crucial for advancing disease treatments. Our research reveals a critical connection between the KEOPS complex and Sua5 in Cryptococcus neoformans, a significant cause of fungal meningitis. While the KEOPS complex is known for its versatile roles in cellular processes, Sua5 is specialized in t6A tRNA modification. Our key finding is that the diverse roles of the KEOPS complex, ranging from cell growth and stress response to virulence, are fundamentally linked to its function in t6A tRNA modification. This conclusion is supported by the remarkable similarities between the impacts of Sua5 and KEOPS on these processes, despite their roles in different steps of the t6A modification pathway. This newfound understanding deepens our insight into fungal biology and opens new avenues for developing potential therapies against dangerous fungal diseases.


Assuntos
Cryptococcus neoformans , Meningite Fúngica , Cryptococcus neoformans/genética , Cryptococcus neoformans/metabolismo , Adenosina/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo
2.
J Microbiol ; 61(2): 211-220, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36814003

RESUMO

RNase E is an essential enzyme in Escherichia coli. The cleavage site of this single-stranded specific endoribonuclease is well-characterized in many RNA substrates. Here, we report that the upregulation of RNase E cleavage activity by a mutation that affects either RNA binding (Q36R) or enzyme multimerization (E429G) was accompanied by relaxed cleavage specificity. Both mutations led to enhanced RNase E cleavage in RNA I, an antisense RNA of ColE1-type plasmid replication, at a major site and other cryptic sites. Expression of a truncated RNA I with a major RNase E cleavage site deletion at the 5'-end (RNA I-5) resulted in an approximately twofold increase in the steady-state levels of RNA I-5 and the copy number of ColE1-type plasmid in E. coli cells expressing wild-type or variant RNase E compared to those expressing RNA I. These results indicate that RNA I-5 does not efficiently function as an antisense RNA despite having a triphosphate group at the 5'-end, which protects the RNA from ribonuclease attack. Our study suggests that increased cleavage rates of RNase E lead to relaxed cleavage specificity on RNA I and the inability of the cleavage product of RNA I as an antisense regulator in vivo does not stem from its instability by having 5'-monophosphorylated end.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , RNA Bacteriano/metabolismo , RNA Antissenso/genética , RNA Antissenso/metabolismo , Especificidade por Substrato , Proteínas de Escherichia coli/genética
3.
BMB Rep ; 56(2): 102-107, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36513383

RESUMO

Genome editing using CRISPR-associated technology is widely used to modify the genomes rapidly and efficiently on specific DNA double-strand breaks (DSBs) induced by Cas9 endonuclease. However, despite swift advance in Cas9 engineering, structural basis of Cas9-recognition and cleavage complex remains unclear. Proper assembly of this complex correlates to effective Cas9 activity, leading to high efficacy of genome editing events. Here, we develop a CRISPR/Cas9-RAD51 plasmid constitutively expressing RAD51, which can bind to singlestranded DNA for DSB repair. We show that the efficiency of CRISPR-mediated genome editing can be significantly improved by expressing RAD51, responsible for DSB repair via homologous recombination (HR), in both gene knock-out and knock-in processes. In cells with CRISPR/Cas9-RAD51 plasmid, expression of the target genes (cohesin SMC3 and GAPDH) was reduced by more than 1.9-fold compared to the CRISPR/Cas9 plasmid for knock-out of genes. Furthermore, CRISPR/Cas9-RAD51 enhanced the knock-in efficiency of DsRed donor DNA. Thus, the CRISPR/Cas9-RAD51 system is useful for applications requiring precise and efficient genome edits not accessible to HR-deficient cell genome editing and for developing CRISPR/Cas9-mediated knockout technology. [BMB Reports 2023; 56(2): 102-107].


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Proteína 9 Associada à CRISPR/genética , Quebras de DNA de Cadeia Dupla , Genoma
4.
J Microbiol ; 60(12): 1162-1167, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36422844

RESUMO

Ribosomes composed of genome-encoded heterogeneous rRNAs are implicated in the rapid adaptation of bacterial cells to environmental changes. A previous study showed that ribosomes bearing the most heterogeneous rRNAs expressed from the rrnI operon (I-ribosomes) are implicated in the preferential translation of a subset of mRNAs, including hspA and tpiA, in Vibrio vulnificus CMCP6. In this study, we show that HspA nascent peptides were predominantly bound to I-ribosomes. Specifically, I-ribosomes were enriched more than two-fold in ribosomes that were pulled down by immunoprecipitation of HspA peptides compared with the proportion of I-ribosomes in crude ribosomes and ribosomes pulled down by immunoprecipitation of RNA polymerase subunit ß peptides in the wild-type (WT) and rrnI-completed strains. Other methods that utilized the incorporation of an affinity tag in 23S rRNA or chimeric rRNA tethering 16S and 23S rRNAs, which generated specialized functional ribosomes in Escherichia coli, did not result in functional I-ribosomes in V. vulnificus CMCP6. This study provides direct evidence of the preferential translation of hspA mRNA by I-ribosomes.


Assuntos
Infecções por Escherichia coli , Ribossomos , Humanos , Ribossomos/genética , RNA Ribossômico 23S , RNA Mensageiro/genética , Escherichia coli/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA