Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell ; 34(6): 2404-2423, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35294035

RESUMO

Gene regulation ensures that the appropriate genes are expressed at the proper time. Nuclear retention of incompletely spliced or mature mRNAs is emerging as a novel, previously underappreciated layer of posttranscriptional regulation. Studies on this phenomenon indicated that it exerts a significant influence on the regulation of gene expression by regulating export and translation delay, which allows the synthesis of specific proteins in response to a stimulus or at strictly controlled time points, for example, during cell differentiation or development. Here, we show that transcription in microsporocytes of European larch (Larix decidua) occurs in a pulsatile manner during prophase of the first meiotic division. Transcriptional activity was then silenced after each pulse. However, the transcripts synthesized were not exported immediately to the cytoplasm but were retained in the nucleoplasm and Cajal bodies (CBs). In contrast to the nucleoplasm, we did not detect mature transcripts in CBs, which only stored nonfully spliced transcripts with retained introns. Notably, the retained introns were spliced at precisely defined times, and fully mature mRNAs were released into the cytoplasm for translation. As similar processes have been observed during spermatogenesis in animals, our results illustrate an evolutionarily conserved mechanism of gene expression regulation during generative cells development in Eukaryota.


Assuntos
Larix , Animais , Corpos Enovelados/genética , Corpos Enovelados/metabolismo , Larix/genética , Larix/metabolismo , Meiose , Prófase , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
2.
Nucleic Acids Res ; 51(3): 1409-1423, 2023 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-36124719

RESUMO

The introduction of phosphorothioate (PS) linkages to the backbone of therapeutic nucleic acids substantially increases their stability and potency. It also affects their interactions with cellular proteins, but the molecular mechanisms that underlie this effect are poorly understood. Here, we report structural and biochemical studies of interactions between annexin A2, a protein that does not possess any known canonical DNA binding domains, and phosphorothioate-modified antisense oligonucleotides. We show that a unique mode of hydrophobic interactions between a sulfur atom of the phosphorothioate group and lysine and arginine residues account for the enhanced affinity of modified nucleic acid for the protein. Our results demonstrate that this mechanism of interaction is observed not only for nucleic acid-binding proteins but can also account for the association of PS oligonucleotides with other proteins. Using the anomalous diffraction of sulfur, we showed that preference for phosphorothioate stereoisomers is determined by the hydrophobic environment around the PS linkage that comes not only from protein but also from additional structural features within the ASO such as 5-Me groups on cytosine nucleobases.


Assuntos
Anexina A2 , Anexina A2/metabolismo , Ligação Proteica/genética , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Fosforotioatos/química , DNA/metabolismo , Proteínas/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Enxofre/metabolismo
3.
Plant J ; 103(3): 1155-1173, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32369637

RESUMO

In recent years, research has increasingly focused on the key role of post-transcriptional regulation of messenger ribonucleoprotein (mRNP) function and turnover. As a result of the complexity and dynamic nature of mRNPs, the full composition of a single mRNP complex remains unrevealed and mRNPs are poorly described in plants. Here we identify canonical Sm proteins as part of the cytoplasmic mRNP complex, indicating their function in the post-transcriptional regulation of gene expression in plants. Sm proteins comprise an evolutionarily ancient family of small RNA-binding proteins involved in pre-mRNA splicing. The latest research indicates that Sm could also impact on mRNA at subsequent stages of its life cycle. In this work we show that in the microsporocyte cytoplasm of Larix decidua, the European larch, Sm proteins accumulate within distinct cytoplasmic bodies, also containing polyadenylated RNA. To date, several types of cytoplasmic bodies involved in the post-transcriptional regulation of gene expression have been described, mainly in animal cells. Their role and molecular composition in plants remain less well established, however. A total of 222 mRNA transcripts have been identified as cytoplasmic partners for Sm proteins. The specific colocalization of these mRNAs with Sm proteins within cytoplasmic bodies has been confirmed via microscopic analysis. The results from this work support the hypothesis, that evolutionarily conserved Sm proteins have been adapted to perform a whole repertoire of functions related to the post-transcriptional regulation of gene expression in Eukaryota. This adaptation presumably enabled them to coordinate the interdependent processes of splicing element assembly, mRNA maturation and processing, and mRNA translation regulation, and its degradation.


Assuntos
Proteínas de Plantas/metabolismo , RNA de Plantas/metabolismo , RNA Citoplasmático Pequeno/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/metabolismo , Spliceossomos/metabolismo , Citoplasma/metabolismo , Regulação da Expressão Gênica de Plantas , Larix/metabolismo , RNA Mensageiro/metabolismo
4.
RNA Biol ; 18(sup2): 623-639, 2021 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-34766865

RESUMO

Despite the development of non-radioactive DNA/RNA labelling methods, radiolabelled nucleic acids are commonly used in studies focused on the determination of RNA fate. Nucleic acid fragments with radioactive nucleotide analoguesincorporated into the body or at the 5' or 3' terminus of the molecule can serve as probes in hybridization-based analyses of in vivo degradation and processing of transcripts. Radiolabelled oligoribonucleotides are utilized as substrates in biochemical assays of various RNA metabolic enzymes, such as exo- and endoribonucleases, nucleotidyltransferases or helicases. In some applications, the placement of the label is not a concern, while in other cases it is required that the radioactive mark is located at the 5'- or 3'-end of the molecule. An unsurpassed method for 5'-end RNA labelling employs T4 polynucleotide kinase (PNK) and [γ-32P]ATP. In the case of 3'-end labelling, several different possibilities exist. However, they require the use of costly radionucleotide analogues. Previously, we characterized an untypical nucleotidyltransferase named CutA, which preferentially incorporates cytidines at the 3'-end of RNA substrates. Here, we demonstrate that this unusual feature can be used for the development of a novel, efficient, reproducible and economical method of RNA 3'-end labelling by CutA-mediated cytidine tailing. The labelling efficiency is comparable to that achieved with the most common method applied to date, i.e. [5'-32P]pCp ligation to the RNA 3'-terminus catalysed by T4 RNA ligase I. We show the utility of RNA substrates labelled using our new method in exemplary biochemical assays assessing directionality of two well-known eukaryotic exoribonucleases, namely Dis3 and Xrn1.


Assuntos
Nucleotidiltransferases/química , RNA/química , Coloração e Rotulagem/métodos , Citidina Trifosfato/química , Técnicas In Vitro , Marcação por Isótopo/métodos , Nucleotídeos/química , Radioisótopos de Fósforo , RNA/genética , RNA Ligase (ATP)/química , Coloração e Rotulagem/normas , Especificidade por Substrato , Uridina Trifosfato/química
5.
Int J Mol Sci ; 22(16)2021 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-34445207

RESUMO

Recent studies show a crucial role of post-transcriptional processes in the regulation of gene expression. Our research has shown that mRNA retention in the nucleus plays a significant role in such regulation. We studied larch microsporocytes during meiotic prophase, characterized by pulsatile transcriptional activity. After each pulse, the transcriptional activity is silenced, but the transcripts synthesized at this time are not exported immediately to the cytoplasm but are retained in the cell nucleus and especially in Cajal bodies, where non-fully-spliced transcripts with retained introns are accumulated. Analysis of the transcriptome of these cells and detailed analysis of the nuclear retention and transport dynamics of several mRNAs revealed two main patterns of nuclear accumulation and transport. The majority of studied transcripts followed the first one, consisting of a more extended retention period and slow release to the cytoplasm. We have shown this in detail for the pre-mRNA and mRNA encoding RNA pol II subunit 10. In this pre-mRNA, a second (retained) intron is posttranscriptionally spliced at a precisely defined time. Fully mature mRNA is then released into the cytoplasm, where the RNA pol II complexes are produced. These proteins are necessary for transcription in the next pulse to occur.mRNAs encoding translation factors and SERRATE followed the second pattern, in which the retention period was shorter and transcripts were rapidly transferred to the cytoplasm. The presence of such a mechanism in various cell types from a diverse range of organisms suggests that it is an evolutionarily conserved mechanism of gene regulation.


Assuntos
Núcleo Celular/metabolismo , Larix/metabolismo , Pólen/metabolismo , Prófase , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo , Núcleo Celular/genética , Larix/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/genética , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , RNA Mensageiro/genética , RNA de Plantas/genética
6.
J Am Chem Soc ; 142(16): 7456-7468, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-32202774

RESUMO

The phosphorothioate backbone modification (PS) is one of the most widely used chemical modifications for enhancing the drug-like properties of nucleic acid-based drugs, including antisense oligonucleotides (ASOs). PS-modified nucleic acid therapeutics show improved metabolic stability from nuclease-mediated degradation and exhibit enhanced interactions with plasma, cell-surface, and intracellular proteins, which facilitates their tissue distribution and cellular uptake in animals. However, little is known about the structural basis of the interactions of PS nucleic acids with proteins. Here, we report a crystal structure of the DNA-binding domain of a model ASO-binding protein PC4, in complex with a full PS 2'-OMe DNA gapmer ASO. To our knowledge this is the first structure of a complex between a protein and fully PS nucleic acid. Each PC4 dimer comprises two DNA-binding interfaces. In the structure one interface binds the 5'-terminal 2'-OMe PS flank of the ASO, while the other interface binds the regular PS DNA central part in the opposite polarity. As a result, the ASO forms a hairpin-like structure. ASO binding also induces the formation of a dimer of dimers of PC4, which is stabilized by base pairing between homologous regions of the ASOs bound by each dimer of PC4. The protein interacts with the PS nucleic acid through a network of electrostatic and hydrophobic interactions, which provides insights into the origins for the enhanced affinity of PS for proteins. The importance of these contacts was further confirmed in a NanoBRET binding assay using a Nano luciferase tagged PC4 acting as the BRET donor, to a fluorescently conjugated ASO acting as the BRET acceptor. Overall, our results provide insights into the molecular forces that govern the interactions of PS ASOs with cellular proteins and provide a potential model for how these interactions can template protein-protein interactions causative of cellular toxicity.


Assuntos
Ácidos Nucleicos/metabolismo , Oligonucleotídeos Fosforotioatos/química , Proteínas/metabolismo , Humanos
7.
Bioorg Med Chem ; 28(23): 115741, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32992250

RESUMO

The chemical cross-linking of complexes of proteins with nucleic acids is often used in structural and mechanistic studies of these oftentimes unstable and transient complexes. To date, no method has been reported for the thiol-based conjugation of proteins with an RNA backbone, mainly because of instability of the modified ribonucleic acid that is functionalized at the phosphodiester and its rapid hydrolysis. Here, we report the site-specific synthesis of stable RNA oligonucleotides with a thiol-bearing linker that was attached to the phosphodiester backbone, where the ribonucleotide at the cross-linking site was either replaced with 2'-deoxy- or 2'-fluororibonucleotide. The utility of this approach was validated in cross-linking tests with RNase H1, a model protein for RNA/DNA binding and key effector in DNA-like antisense drug therapy. Furthermore, scale-up cross-linking and purification of the complexes confirmed that the method is useful for obtaining preparations of protein-RNA/DNA complexes with purity and stability that are suitable for further biochemical and structural studies. The present approach broadens the repertoire of disulfide-based cross-linking strategies and is a novel tool for the stabilization of protein-RNA complexes in which the interaction occurs via the RNA backbone. This methodology may be broadly applicable to studies of otherwise unstable or transient complexes of proteins with RNA and RNA/DNA.


Assuntos
RNA/metabolismo , Ribonuclease H/metabolismo , Sequência de Bases , Reagentes de Ligações Cruzadas/química , Cistamina/química , Dissulfetos/química , Humanos , Mutagênese Sítio-Dirigida , Conformação de Ácido Nucleico , Oligonucleotídeos/síntese química , Oligonucleotídeos/química , Oligonucleotídeos/metabolismo , Ligação Proteica , RNA/química , Ribonuclease H/química , Ribonuclease H/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA