Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Org Chem ; 73(22): 8861-6, 2008 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-18855457

RESUMO

Alkyl aryl selenides with and without functional groups on the alkyl group were transformed efficiently into the corresponding carbonyl compounds, particularly primary alkyl aryl selenides in good yields, by a simple photolysis in the presence of air or oxygen. This transformation can be conducted without protection of functional groups. The yield of carbonyl compounds was much affected by the solvent viscosity, reaction temperature, concentration of dissolved oxygen in the solvents, wavelength of light, and structure of the aryl substituents. The present study indicates that aryl selenides can be considered as a masked carbonyl group that can be easily converted to a carbonyl group by very mild reaction conditions even in the presence of various unprotected functional groups. Therefore, this functional group transformation can be used as an important tool in organic synthesis due to its simplicity and mild reaction condition.

2.
Org Lett ; 11(21): 4870-3, 2009 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-19799405

RESUMO

Alkyl aryl tellurides were efficiently transformed to the corresponding carbonyl compounds by photo-oxidation with sunlight without affecting various functional groups in the alkyl moiety. The tellurides can be used as a new carbonyl precursor, and the photolysis can be conducted without special equipment for light sources.

3.
J Org Chem ; 72(23): 8700-6, 2007 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-17939721

RESUMO

Primary photochemical paths of alkyl phenyl selenides (1) were investigated, and an origin of large deviations in the chemical yields of products obtained by carbon radical reactions induced by photolysis of phenyl selenides was clarified. KrF excimer laser photolyses of n-pentyl phenyl selenide (1a) yielded 1-pentene (2a), n-pentane (3a), n-decane (4a), dipentyl selenide (5a), benzene (6), dipentyl diselenide (7a), and diphenyl diselenide (7) as major photoproducts, with compounds 2a, 3a, 4a, 5a, and 7 formed by pentyl-Se bond cleavage, and 5a, 6, and 7a by Ph-Se bond cleavage. The selectivity of the photoproducts revealed the occurrence of an unexpected amount of Ph-Se bond cleavage (35% in n-hexane at 248 nm) during photolysis. Solvent viscosity, wavelength of light, and the structure of alkyl substituents were the major factors that controlled Ph-Se bond cleavage. The ratio of Ph-Se bond cleavage decreased with increasing solvent viscosity and laser wavelength. The effect of alkyl substituents on the ratio of bond cleavages, Ph-Se/total C-Se, was investigated for five alkyl phenyl selenides; the ratio decreased in the order pentyl > 2-methylallyl > allyl > 1-ethylpropyl > tert-butyl groups. The contribution of Ph-Se bond cleavage is most probably the origin of the large deviations in the yields of radical reactions induced by photolyses of 1, which can be minimized by selecting appropriate solvents and wavelength of light.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA