Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Nature ; 605(7909): 315-324, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35314832

RESUMO

After fertilization, the quiescent zygote experiences a burst of genome activation that initiates a short-lived totipotent state. Understanding the process of totipotency in human cells would have broad applications. However, in contrast to in mice1,2, demonstration of the time of zygotic genome activation or the eight-cell (8C) stage in in vitro cultured human cells has not yet been reported, and the study of embryos is limited by ethical and practical considerations. Here we describe a transgene-free, rapid and controllable method for producing 8C-like cells (8CLCs) from human pluripotent stem cells. Single-cell analysis identified key molecular events and gene networks associated with this conversion. Loss-of-function experiments identified fundamental roles for DPPA3, a master regulator of DNA methylation in oocytes3, and TPRX1, a eutherian totipotent cell homeobox (ETCHbox) family transcription factor that is absent in mice4. DPPA3 induces DNA demethylation throughout the 8CLC conversion process, whereas TPRX1 is a key executor of 8CLC gene networks. We further demonstrate that 8CLCs can produce embryonic and extraembryonic lineages in vitro or in vivo in the form of blastoids5 and complex teratomas. Our approach provides a resource to uncover the molecular process of early human embryogenesis.


Assuntos
Embrião de Mamíferos , Desenvolvimento Embrionário , Células-Tronco Pluripotentes , Zigoto , Humanos , Proteínas Cromossômicas não Histona/genética , Embrião de Mamíferos/citologia , Proteínas de Homeodomínio/genética , Células-Tronco Pluripotentes/citologia , Fatores de Transcrição/genética , Zigoto/citologia
2.
Phys Chem Chem Phys ; 22(33): 18261-18264, 2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32785352

RESUMO

A detailed analysis of the ECL interaction between luminol and tris(2,2'-bipyridyl)dichlororuthenium(ii) (Ru(bpy)32+) is required before using them in ECL systems for multianalyte detection purposes. Spectro-electrochemiluminescence demonstrates that not only must the emission properties be considered, but also their additional optical characteristics are involved in the explanation of the interaction mechanism between these luminophores.

3.
Sensors (Basel) ; 20(13)2020 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-32630681

RESUMO

Metal phthalocyanines are well-known sensing phases with applications in different scientific fields due to their interesting properties. Detailed characterization by Raman spectroscopy was performed in order to study the shifting of the vibrational bands related to the coordination sphere of each metal phthalocyanine. In this work, a study involving the use of screen-printed electrodes (SPEs) with various metal phthalocyanines to electrochemically detect and quantify chlorine (Cl2) gas is presented. The Cl2 gas was generated in-situ via oxidation of the chloride present in form of aqueous salt solutions. The developed method offers not only the possibility to quantify chlorine, but also to discriminate among several chlorinated species due to the changes observed in the voltammetric profiles associated with the interaction between the specie assayed and the phthalocyanine metallic center. Optimization of detecting parameters was also performed to apply this procedure for the quantification of chlorine generated from commercial chlorine tablets. The development of this proof of concept shows interesting possibilities and easy-to-use applications with novel on metal phthalocyanines based SPE sensors.

4.
Phys Chem Chem Phys ; 21(12): 6314-6318, 2019 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-30849168

RESUMO

NIR spectroelectrochemistry has scarcely been used for deconvolving aqueous mixtures due to the water restriction in this spectral range. However, this work offers an interesting approach for the study of mixtures of molecules with similar electrochemical and spectroscopic behaviour by overcoming the limitations of this hybrid technique. As a proof of concept, the resolution of mixtures of two dyes with similar chemical structures demonstrates the usefulness of NIR spectroelectrochemistry.

5.
Anal Chem ; 89(7): 3879-3883, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28290688

RESUMO

Bipolar electrochemistry is receiving growing attention in the last years, not only because it is an important tool for studying electron transfer processes, but also because it is really fruitful in the development of new analytical sensors. Bipolar electrodes show promising applications as a direct analytical tool since oxidation and reduction reactions take place simultaneously on different parts of a single conductor. There are several electrochemical devices that provide information about electron transfer between two immiscible electrolyte solutions, but to the best of our knowledge, this is the first time that a bipolar device is able to record two spectroelectrochemical responses concomitantly at two different compartments. It allows deconvolving the electrochemical signal into two different optical signals related to the electron transfer processes occurring at two compartments that are electrically in contact. The combination of an electrochemical and two spectroscopic responses is indeed very useful, providing essential advantages in the study of a huge variety of systems. The study of three different electrochemical systems, such as reversible redox couples, carbon nanotubes, and conducting polymers has allowed us to validate the new cell and to demonstrate the capabilities of this technique to obtain valuable time-resolved information related to the electron transfer processes.

6.
Anal Chem ; 88(16): 8210-7, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27427898

RESUMO

The development of a new device based on the use of UV-vis bare optical fibers in a long optical path length configuration and the measurement of the Raman response in normal arrangement allows us to perform UV-vis and Raman spectroelectrochemistry simultaneously in a single experiment. To the best of our knowledge, this is the first time that a spectroelectrochemistry device is able to record both spectroscopic responses at the same time, which further expands the versatility of spectroelectrochemistry techniques and enables us to obtain much more high-quality information in a single experiment. Three different electrochemical systems, such as ferrocyanide, dopamine, and 3,4-ethylenedioxythiophene, have been studied to validate the cell and to demonstrate the performance of the device. Processes that take place in solution can be properly distinguished from processes that occur on the electrode surface during the electrochemical experiment, providing a whole picture of the reactions taking place at the electrode/solution interface. Therefore, this device allows us to study a larger number of complex electrochemical processes from different points of view taking into account not only the UV-vis spectral changes in the solution adjacent to the electrode but also the Raman signal at any location. Furthermore, complementary information, which could not be unambiguously extracted without considering together the two spectroscopic signals and the electrochemical response, is obtained in a novel way.

7.
Phys Med ; 112: 102622, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37331081

RESUMO

PURPOSE: This study presents a treatment planning system for intraoperative low-energy photon radiotherapy based on photogrammetry from real images of the surgical site taken in the operating room. MATERIAL AND METHODS: The study population comprised 15 patients with soft-tissue sarcoma. The system obtains the images of the area to be irradiated with a smartphone or tablet, so that the absorbed doses in the tissue can be calculated from the reconstruction without the need for computed tomography. The system was commissioned using 3D printing of the reconstructions of the tumor beds. The absorbed doses at various points were verified using radiochromic films that were suitably calibrated for the corresponding energy and beam quality. RESULTS: The average reconstruction time of the 3D model from the video sequence in the 15 patients was 229,6±7,0 s. The entire procedure, including video capture, reconstruction, planning, and dose calculation was 520,6±39,9 s. Absorbed doses were measured on the 3D printed model with radiochromic film, the differences between these measurements and those calculated by the treatment planning system were 1.4% at the applicator surface, 2.6% at 1 cm, 3.9% at 2 cm and 6.2% at 3 cm. CONCLUSIONS: The study shows a photogrammetry-based low-energy photon IORT planning system, capable of obtaining real-time images inside the operating room, immediately after removal of the tumor and immediately before irradiation. The system was commissioned with radiochromic films measurements in 3D-printed model.


Assuntos
Braquiterapia , Sarcoma , Humanos , Dosagem Radioterapêutica , Braquiterapia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Imagens de Fantasmas , Fotogrametria
8.
Biosensors (Basel) ; 12(11)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36421150

RESUMO

A new spectroelectrochemical two-enzyme sensor system has been developed for the detection of acetaldehyde in wine. A combination of spectroscopy and electrochemistry improves the analytical features of the electrochemical sensor because the optical information collected with this system is only associated with acetaldehyde and avoids the interferents also present in wines as polyphenols. Spectroelectrochemical detection is achieved by the analysis of the optical properties of the K3[Fe(CN)6]/K4[Fe(CN)6] redox couple involved in the enzymatic process: aldehyde dehydrogenase catalyzes the aldehyde oxidation using ß-nicotinamide adenine dinucleotide hydrate (NAD+) as a cofactor and, simultaneously, diaphorase reoxidizes the NADH formed in the first enzymatic process due to the presence of K3[Fe(CN)6]. An analysis of the characteristic UV-vis bands of K3[Fe(CN)6] at 310 and 420 nm allows the detection of acetaldehyde, since absorption bands are only related to the oxidation of this substrate, and avoids the contribution of other interferents.


Assuntos
Acetaldeído , Vinho , Acetaldeído/análise , Vinho/análise , NAD/análise , NAD/química , NAD/metabolismo , Eletroquímica , Oxirredução
9.
Spectrochim Acta A Mol Biomol Spectrosc ; 248: 119174, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33234478

RESUMO

Enhancement of Raman intensity due to the electrochemical surface-enhanced Raman scattering (EC-SERS) effect is an interesting alternative to overcome the lack of sensitivity traditionally associated with Raman spectroscopy. Furthermore, activation of metallic screen-printed electrodes (SPEs) by electrochemical route leads to the reproducible generation of nanostructures with excellent SERS properties. EC-SERS procedure proposed in this work for the detection of several pesticides (thiram, imidacloprid and chlorpyrifos) with different nature, uses gold SPEs as SERS substrates, but also includes a preconcentration step as the initial and essential stage. Taking into account the small volume of solution employed, only 60 µL, the preconcentration cannot be performed for more than 15 min in order to ensure the proper contact of the solution with WE, RE and CE. Furthermore, selected temperature, 34 °C, is not very high to allow the exhaustive control of the drop volume. Optimization of preconcentration parameters (time and temperature) displays a crucial step, particularly in the detection of low concentrations of pesticides, because it will provide higher Raman intensity in EC-SERS experiments. After the initial step, gold SPEs were electrochemically activated by cyclic voltammetry, allowing the detection of very low concentration (µg·L-1) of pesticides due to the generation of fresh nanostructures with SERS effect.

10.
Clin Microbiol Infect ; 27(6): 892-896, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33662544

RESUMO

OBJECTIVES: Coronavirus disease 2019 (COVID-19) survivors are reporting residual abnormalities after discharge from hospital. Limited information is available about this stage of recovery or the lingering effects of the virus on pulmonary function and inflammation. This study aimed to describe lung function in patients recovering from COVID-19 hospitalization and to identify biomarkers in serum and induced sputum samples from these patients. METHODS: Patients admitted to Spanish hospitals with laboratory-confirmed COVID-19 infection by a real-time PCR (RT-PCR) assay for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were recruited for this study. Each hospital screened their lists of discharged patients at least 45 days after symptom onset. SARS-CoV-2-infected patients were divided into mild/moderate and severe disease groups according to the severity of their symptoms during hospitalization. Patients' epidemiological and medical histories, comorbidities, chronic treatments, and laboratory parameters were evaluated. Pulmonary function tests, the standardized 6-minute walk test (6MWT) and chest computed tomography (CT) were also performed. The levels of proteases, their inhibitors, and shed receptors were measured in serum and induced sputum samples. RESULTS: A total of 100 patients with respiratory function tests were included in this study. The median number of days after the onset of symptoms was 104 (IQR 89.25, 126.75). COVID-19 was severe in 47% of patients (47/100). CT was normal in 48% of patients (48/100). Lung function was normal forced expiratory volume in one second (FEV1) ≥80%, forced vital capacity (FVC) ≥80%, FEV1/FVC ≥0.7, and diffusing capacity for carbon monoxide (DLCO) ≥80% in 92% (92/100), 94% (94/100), 100% (100/100) and 48% (48/100) of patients, respectively. Multivariate analysis showed that a DLCO <80% (OR 5.92; 95%CI 2.28-15.37; p < 0.0001) and a lower serum lactate dehydrogenase level (OR 0.98; 95%CI 0.97-0.99) were associated with the severe disease group of SARS-CoV-2 cases during hospital stay. CONCLUSIONS: A diffusion deficit (DLCO <80%) was still present after hospital discharge and was associated with the most severe SARS-CoV-2 cases.


Assuntos
COVID-19/complicações , COVID-19/fisiopatologia , Pulmão/fisiopatologia , Adulto , Idoso , Biomarcadores/sangue , COVID-19/diagnóstico , Teste de Ácido Nucleico para COVID-19 , Comorbidade , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Alta do Paciente , Estudos Prospectivos , Testes de Função Respiratória , SARS-CoV-2/isolamento & purificação , Espanha/epidemiologia , Sobreviventes , Tomografia Computadorizada por Raios X
11.
Talanta ; 206: 120190, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31514825

RESUMO

Raman spectroelectrochemistry based on electrochemical surface-enhanced Raman scattering (EC-SERS) effect is an interesting alternative to overcome the lack of sensitivity of normal Raman spectroscopy. Electrochemical activation of metallic screen-printed electrodes (SPEs) leads to the reproducible generation of nanostructures with excellent SERS properties. In that way, gold SPEs circumvent the traditional reproducibility limitation and produce the enhancement of the Raman intensity to favor the detection of low concentrations. Furthermore, fingerprint features of Raman spectroscopy make possible the dynamic spectroelectrochemical analysis of B vitamins. The accuracy assignments of Raman bands associated with B1, B2, B3, B6 and B12 vitamins present in multivitamin complexes provides valuable information, allowing us not only the detection of B vitamin present in mixtures, but also to understand the interaction between vitamins and metallic SERS surfaces.


Assuntos
Niacinamida/análise , Riboflavina/análise , Tiamina/análise , Vitamina B 12/análise , Vitamina B 6/análise , Complexo Vitamínico B/análise , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Ouro/química , Nanopartículas Metálicas/química , Reprodutibilidade dos Testes , Análise Espectral Raman/métodos
12.
Stem Cell Res ; 45: 101804, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32339904

RESUMO

Mutations in the Leucine rich repeat kinase 2 (LRRK2) gene are found in both familial and sporadic Parkinson's disease (PD), and are also associated with immune-related disorders including Crohn's disease (CD) and leprosy. We have generated two homozygous LRRK2 knockout human induced pluripotent stem cell (iPSC) lines using CRISPR-Cas9 in a well-characterized human iPSC clone. The LRRK2 knockout cell lines retained normal morphology, gene expression, and the capacity to differentiate into cell types of the three germ layers. These cell lines are valuable for elucidating the role of LRRK2 in innate immunity and PD.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Parkinson , Sistemas CRISPR-Cas/genética , Linhagem Celular , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Mutação , Doença de Parkinson/genética
13.
Stem Cell Res ; 45: 101822, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32387897

RESUMO

Parkinson's disease (PD) is one of the most common neurodegenerative disorders and is characterized by the progressive degeneration of dopaminergic (DA) neurons in the substantia nigra. Loss of function mutations in PARK2 cause familial PD in an autosomal recessive manner. PARK2 encodes an E3 ubiquitin ligase that is involved in regulation of mitochondrial homeostasis. However, the mechanistic links between PARK2 mutations and dopaminergic neuron degeneration are unclear. Here, we have generated three patient-derived induced pluripotent stem cell (iPSC) lines from the same donor with mutant PARKIN (p. C253Y). These well characterized cell lines will facilitate the study of PARKIN function in disease relevant cell types in vitro.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Parkinson , Transtornos Parkinsonianos , Neurônios Dopaminérgicos , Humanos , Doença de Parkinson/genética , Ubiquitina-Proteína Ligases/genética
14.
Stem Cell Res ; 46: 101845, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32534165

RESUMO

Mutations occurring in the gene body of PARK7 (encoding DJ-1/PARK7) cause autosomal recessive early-onset parkinsonism (AREP). These mutations produce a loss of function and have been reported to lead to dopaminergic neuron degeneration in the substantia nigra. However, the underlying mechanisms are largely unknown. Here, we report the generation of a patient-derived induced pluripotent stem cell (iPSC) line carrying mutant DJ-1 (p.L10P). This cell line is a valuable tool for in vitro Parkinson's disease (PD) modeling and mechanistic studies.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doença de Parkinson , Dopamina , Neurônios Dopaminérgicos , Humanos , Doença de Parkinson/genética , Proteína Desglicase DJ-1/genética , Substância Negra
15.
Sci Adv ; 6(29): eaba1593, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32832621

RESUMO

Mouse embryonic stem cells cultured with MEK (mitogen-activated protein kinase kinase) and GSK3 (glycogen synthase kinase 3) inhibitors (2i) more closely resemble the inner cell mass of preimplantation blastocysts than those cultured with SL [serum/leukemia inhibitory factor (LIF)]. The transcriptional mechanisms governing this pluripotent ground state are unresolved. Release of promoter-proximal paused RNA polymerase II (Pol2) is a multistep process necessary for pluripotency and cell cycle gene transcription in SL. We show that ß-catenin, stabilized by GSK3 inhibition in medium with 2i, supplies transcriptional coregulators at pluripotency loci. This selectively strengthens pluripotency loci and renders them addicted to transcription initiation for productive gene body elongation in detriment to Pol2 pause release. By contrast, cell cycle genes are not bound by ß-catenin, and proliferation/self-renewal remains tightly controlled by Pol2 pause release under 2i conditions. Our findings explain how pluripotency is reinforced in the ground state and also provide a general model for transcriptional resilience/adaptation upon network perturbation in other contexts.

16.
Front Neurol ; 10: 806, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31417485

RESUMO

REM Behavior Disorder (RBD) is now recognized as the prodromal stage of α-synucleinopathies such as Parkinson's disease (PD). In this paper, we describe deep learning models for diagnosis/prognosis derived from a few minutes of eyes-closed resting electroencephalography data (EEG) collected at baseline from idiopathic RBD patients (n = 121) and healthy controls (HC, n = 91). A few years after the EEG acquisition (4±2 years), a subset of the RBD patients were eventually diagnosed with either PD (n = 14) or Dementia with Lewy bodies (DLB, n = 13), while the rest remained idiopathic RBD. We describe first a simple deep convolutional neural network (DCNN) with a five-layer architecture combining filtering and pooling, which we train using stacked multi-channel EEG spectrograms from idiopathic patients and healthy controls. We treat the data as in audio or image classification problems where deep networks have proven successful by exploiting invariances and compositional features in the data. For comparison, we study a simple deep recurrent neural network (RNN) model using three stacked Long Short Term Memory network (LSTM) cells or gated-recurrent unit (GRU) cells-with very similar results. The performance of these networks typically reaches 80% (±1%) classification accuracy in the balanced HC vs. PD-conversion classification problem. In particular, using data from the best single EEG channel, we obtain an area under the curve (AUC) of 87% (±1%)-while avoiding spectral feature selection. The trained classifier can also be used to generate synthetic spectrograms using the DeepDream algorithm to study what time-frequency features are relevant for classification. We find these to be bursts in the theta band together with a decrease of bursting in the alpha band in future RBD converters (i.e., converting to PD or DLB in the follow up) relative to HCs. From this first study, we conclude that deep networks may provide a useful tool for the analysis of EEG dynamics even from relatively small datasets, offering physiological insights and enabling the identification of clinically relevant biomarkers.

17.
Ann Biomed Eng ; 47(1): 282-296, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30167913

RESUMO

Idiopathic rapid eye movement sleep behavior disorder (RBD) is a serious risk factor for neurodegenerative processes such as Parkinson's disease (PD). We investigate the use of EEG algorithmic complexity derived metrics for its prognosis. We analyzed resting state EEG data collected from 114 idiopathic RBD patients and 83 healthy controls in a longitudinal study forming a cohort in which several RBD patients developed PD or dementia with Lewy bodies. Multichannel data from ~ 3 min recordings was converted to spectrograms and their algorithmic complexity estimated using Lempel-Ziv-Welch compression. Complexity measures and entropy rate displayed statistically significant differences between groups. Results are compared to those using the ratio of slow to fast frequency power, which they are seen to complement by displaying increased sensitivity even when using a few EEG channels. Poor prognosis in RBD appears to be associated with decreased complexity of EEG spectrograms stemming in part from frequency power imbalances and cross-frequency amplitude algorithmic coupling. Algorithmic complexity metrics provide a robust, powerful and complementary way to quantify the dynamics of EEG signals in RBD with links to emerging theories of brain function stemming from algorithmic information theory.


Assuntos
Algoritmos , Eletroencefalografia , Movimentos Oculares , Doença por Corpos de Lewy , Transtornos da Motilidade Ocular , Processamento de Sinais Assistido por Computador , Adulto , Humanos , Doença por Corpos de Lewy/diagnóstico , Doença por Corpos de Lewy/fisiopatologia , Masculino , Transtornos da Motilidade Ocular/diagnóstico , Transtornos da Motilidade Ocular/fisiopatologia , Prognóstico
18.
Stem Cell Res ; 41: 101602, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31698191

RESUMO

Loss of function mutations in PARK2 (encoding PARKIN) cause autosomal recessive Parkinson's disease (PD), which often manifests at a juvenile age. Molecular and biochemical studies show that PARKIN functions as an E3 ubiquitin ligase controlling mitochondrial homeostasis. Yet, the exact mechanisms are unclear due to the use of sub-optimal models including cancer cells and fibroblasts. We have generated a PARK2 knockout (KO) isogenic cell line using a well-characterized induced pluripotent stem cell (iPSC) clone with good differentiation potential. This cell line lacks the expression of all PARKIN isoforms and is valuable for elucidating the role of PARK2 mutations in PD.


Assuntos
Diferenciação Celular , Mutação da Fase de Leitura , Células-Tronco Pluripotentes Induzidas/patologia , Túbulos Renais/patologia , Doença de Parkinson/genética , Doença de Parkinson/patologia , Ubiquitina-Proteína Ligases/genética , Adulto , Células Cultivadas , Feminino , Homozigoto , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Túbulos Renais/metabolismo , Isoformas de Proteínas , Adulto Jovem
19.
Stem Cell Res ; 41: 101607, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31778937

RESUMO

Familial Parkinson's disease (PD) can be caused by deleterious mutations in PINK1 (encoding PINK1) in an autosomal recessive manner. Functional studies suggest that PINK1 works as a regulator of mitochondrial homeostasis. However, how loss of PINK1 induces dopaminergic neuron degeneration is still unclear. Here, we have generated a patient-derived induced pluripotent stem cell (iPSC) line with mutant PINK1 (p. I368N). This cell line will facilitate PD disease modeling in vitro and can be used for generating isogenic cell lines through gene correction.


Assuntos
Diferenciação Celular , Fibroblastos/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Mutação , Doença de Parkinson/genética , Doença de Parkinson/patologia , Proteínas Quinases/genética , Células Cultivadas , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Pessoa de Meia-Idade
20.
Neurophotonics ; 5(1): 015001, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29392156

RESUMO

Transcranial direct current stimulation (tDCS) is currently being used for research and treatment of some neurological and neuropsychiatric disorders, as well as for improvement of cognitive functions. In order to better understand cerebral response to the stimulation and to redefine protocols and dosage, its effects must be monitored. To this end, we have used functional diffuse correlation spectroscopy (fDCS) and time-resolved functional near-infrared spectroscopy (TR-fNIRS) together with electroencephalography (EEG) during and after stimulation of the frontal cortex. Twenty subjects participated in two sessions of stimulation with two different polarity montages and twelve also underwent a sham session. Cerebral blood flow and oxyhemoglobin concentration increased during and after active stimulation in the region under the stimulation electrode while deoxyhemoglobin concentration decreased. The EEG spectrum displayed statistically significant power changes across different stimulation sessions in delta (2 to 4 Hz), theta (4 to 8 Hz), and beta (12 to 18 Hz) bands. Results suggest that fDCS and TR-fNIRS can be employed as neuromonitors of the effects of transcranial electrical stimulation and can be used together with EEG.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA