RESUMO
Glial cells participate actively in the early cognitive decline in Alzheimer's disease (AD) pathology. In fact, recent studies have found molecular and functional abnormalities in astrocytes and microglia in both animal models and brains of patients suffering from this pathology. In this regard, reactive gliosis intimately associated with amyloid plaques has become a pathological hallmark of AD. A recent study from our laboratory reports that astrocyte reactivity is caused by a direct interaction between amyloid beta (Aß) oligomers and integrin ß1. Here, we have generated four recombinant peptides including the extracellular domain of integrin ß1, and evaluated their capacity both to bind in vitro to Aß oligomers and to prevent in vivo Aß oligomer-induced gliosis and endoplasmic reticulum stress. We have identified the minimal region of integrin ß1 that binds to Aß oligomers. This region is called signal peptide and corresponds to the first 20 amino acids of the integrin ß1 N-terminal domain. This recombinant integrin ß1 signal peptide prevented Aß oligomer-induced ROS generation in primary astrocyte cultures. Furthermore, we carried out intrahippocampal injection in adult mice of recombinant integrin ß1 signal peptide combined with or without Aß oligomers and we evaluated by immunohistochemistry both astrogliosis and microgliosis as well as endoplasmic reticulum stress. The results show that recombinant integrin ß1 signal peptide precluded both astrogliosis and microgliosis and endoplasmic reticulum stress mediated by Aß oligomers in vivo. We have developed a molecular tool that blocks the activation of the molecular cascade that mediates gliosis via Aß oligomer/integrin ß1 signaling.
Assuntos
Peptídeos beta-Amiloides , Gliose , Integrina beta1 , Sinais Direcionadores de Proteínas , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Humanos , Integrina beta1/metabolismo , CamundongosRESUMO
Platelet-rich plasma (PRP) is a biologic therapy that promotes healing responses across multiple medical fields, including the central nervous system (CNS). The efficacy of this therapy depends on several factors such as the donor's health status and age. This work aims to prove the effect of PRP on cellular models of the CNS, considering the differences between PRP from young and elderly donors. Two different PRP pools were prepared from donors 65â85 and 20â25 years old. The cellular and molecular composition of both PRPs were analyzed. Subsequently, the cellular response was evaluated in CNS in vitro models, studying proliferation, neurogenesis, synaptogenesis, and inflammation. While no differences in the cellular composition of PRPs were found, the molecular composition of the Young PRP showed lower levels of inflammatory molecules such as CCL-11, as well as the presence of other factors not found in Aged PRP (GDF-11). Although both PRPs had effects in terms of reducing neural progenitor cell apoptosis, stabilizing neuronal synapses, and decreasing inflammation in the microglia, the effect of the Young PRP was more pronounced. In conclusion, the molecular composition of the PRP, conditioned by the age of the donors, affects the magnitude of the biological response.
Assuntos
Córtex Cerebral/imunologia , Mediadores da Inflamação/metabolismo , Microglia/imunologia , Plasma Rico em Plaquetas/imunologia , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/imunologia , Animais , Apoptose/imunologia , Linhagem Celular Tumoral , Proliferação de Células , Córtex Cerebral/citologia , Quimiocina CCL11/metabolismo , Feminino , Humanos , Masculino , Camundongos , Microglia/citologia , Células-Tronco Neurais/imunologia , Neurogênese/imunologia , Neurônios/imunologia , Plasma Rico em Plaquetas/citologia , Plasma Rico em Plaquetas/metabolismo , Cultura Primária de Células , Ratos , Sinapses/imunologia , Adulto JovemRESUMO
[This corrects the article DOI: 10.1155/2018/2530414.].
RESUMO
Small fish are an excellent experimental model to screen endocrine-disrupting compounds, but current fish-based assays to detect endocrine disruption have not been standardized yet, meaning that there is not consensus on endpoints and biomarkers to be measured. Moreover, exposure conditions may vary depending on the species used as the experimental model and the endocrine pathway evaluated. At present, a battery of a wide range of assays is usually needed for the complete assessment of endocrine activities. With the aim of providing a simple, robust, and fast assay to assess endocrine-disrupting potencies for the three major endocrine axes, i.e., estrogens, androgens, and thyroid, we propose the use of a panel of eight gene expression biomarkers in zebrafish larvae. This includes brain aromatase (cyp19a1b) and vitellogenin 1 (vtg1) for estrogens, cytosolic sulfotransferase 2 family 2 (sult2st3) and cytochrome P450 2k22 (cyp2k22) for androgens, and thyroid peroxidase (tpo), transthyretin (ttr), thyroid receptor α (trα), and iodothyronine deiodinase 2 (dio2) for thyroid metabolism. All of them were selected according to their responses after exposure to the natural ligands 17ß-estradiol, testosterone, and 3,3',5-triiodo-L-thyronine (T3), respectively, and subsequently validated using compounds reported as endocrine disruptors in previous studies. Cross-talk effects were also evaluated for all compounds.
Assuntos
Bioensaio/métodos , Disruptores Endócrinos/toxicidade , Transcriptoma/genética , Androgênios/análise , Animais , Sistema Endócrino/efeitos dos fármacos , Sistema Endócrino/metabolismo , Estrogênios/análise , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/genética , Peixe-ZebraRESUMO
Synapse loss is an early manifestation of pathology in Alzheimer's disease (AD) and is currently the best correlate to cognitive decline. Microglial cells are involved in synapse pruning during development via the complement pathway. Moreover, recent evidence points towards a key role played by glial cells in synapse loss during AD. However, further contribution of glial cells and the role of neurons to synapse pathology in AD remain not well understood. This review is aimed at comprehensively reporting the source and/or cellular localization in the CNS-in microglia, astrocytes, or neurons-of the triggering components (C1q, C3) of the classical complement pathway involved in synapse pruning in development, adulthood, and AD.
Assuntos
Envelhecimento/fisiologia , Doença de Alzheimer/metabolismo , Neuroglia/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Humanos , Microglia/metabolismo , Neurônios/citologiaRESUMO
Glial cells are essential to understand Alzheimer's disease (AD) progression, given their role in neuroinflammation and neurodegeneration. There is a need for reliable and easy to manipulate models that allow studying the mechanisms behind neuron and glia communication. Currently available models such as co-cultures require complex methodologies and/or might not be affordable for all laboratories. With this in mind, we aimed to establish a straightforward in vitro setting with neurons and glial cells to study AD. We generated and optimized a 2D triple co-culture model with murine astrocytes, neurons and microglia, based on sequential seeding of each cell type. Immunofluorescence, western blot and ELISA techniques were used to characterize the effects of oligomeric Aß (oAß) in this model. We found that, in the triple co-culture, microglia increased the expression of anti-inflammatory marker Arginase I, and reduced pro-inflammatory iNOS and IL-1ß, compared with microglia alone. Astrocytes reduced expression of pro-inflammatory A1 markers AMIGO2 and C3, and displayed a ramified morphology resembling physiological conditions. Anti-inflammatory marker TGF-ß1 was also increased in the triple co-culture. Lastly, neurons increased post-synaptic markers, and developed more and longer branches than in individual primary cultures. Addition of oAß in the triple co-culture reduced synaptic markers and increased CD11b in microglia, which are hallmarks of AD. Consequently, we developed a straightforward and reproducible triple co-cultured model, where cells resemble physiological conditions better than in individual primary cultures: microglia are less inflammatory, astrocytes are less reactive and neurons display a more mature morphology. Moreover, we are able to recapitulate Aß-induced synaptic loss and CD11b increase. This model emerges as a powerful tool to study neurodegeneration and neuroinflammation in the context of AD and other neurodegenerative diseases.
RESUMO
Amyloid beta (Aß)-mediated synapse dysfunction is an early event in Alzheimer's disease (AD) pathogenesis and previous studies suggest that NMDA receptor (NMDAR) dysregulation may contribute to these pathological effects. Although Aß peptides impair NMDAR expression and activity, the mechanisms mediating these alterations in the early stages of AD are unclear. Here, we observed that NMDAR subunit NR2B and PSD-95 levels were aberrantly upregulated and correlated with Aß42 load in human postsynaptic fractions of the prefrontal cortex in early stages of AD patients, as well as in the hippocampus of 3xTg-AD mice. Importantly, NR2B and PSD95 dysregulation was revealed by an increased expression of both proteins in Aß-injected mouse hippocampi. In cultured neurons, Aß oligomers increased the NR2B-containing NMDAR density in neuronal membranes and the NMDA-induced intracellular Ca2+ increase, in addition to colocalization in dendrites of NR2B subunit and PSD95. Mechanistically, Aß oligomers required integrin ß1 to promote synaptic location and function of NR2B-containing NMDARs and PSD95 by phosphorylation through classic PKCs. These results provide evidence that Aß oligomers modify the contribution of NR2B to NMDAR composition and function in the early stages of AD through an integrin ß1 and PKC-dependent pathway. These data reveal a novel role of Aß oligomers in synaptic dysfunction that may be relevant to early-stage AD pathogenesis.
Assuntos
Doença de Alzheimer , Proteína Quinase C/metabolismo , Receptores de N-Metil-D-Aspartato , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Hipocampo/metabolismo , Humanos , Integrina beta1/metabolismo , Camundongos , N-Metilaspartato , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapses/metabolismoRESUMO
The early identification of teratogens in humans and animals is mandatory for drug discovery and development. Zebrafish has emerged as an alternative model to traditional preclinical models for predicting teratogenicity and other potential chemical-induced toxicity hazards. To prove its predictivity, we exposed zebrafish embryos from 0 to 96 h post fertilization to a battery of 31 compounds classified as teratogens or non-teratogens in mammals. The teratogenicity score was based on the measurement of 16 phenotypical parameters, namely heart edema, pigmentation, body length, eye size, yolk size, yolk sac edema, otic vesicle defects, otoliths defects, body axis defects, developmental delay, tail bending, scoliosis, lateral fins absence, hatching ratio, lower jaw malformations and tissue necrosis. Among the 31 compounds, 20 were detected as teratogens and 11 as non-teratogens, resulting in 94.44 % sensitivity, 90.91 % specificity and 87.10 % accuracy compared to rodents. These percentages decreased slightly when referred to humans, with 87.50 % sensitivity, 81.82 % specificity and 74.19 % accuracy, but allowed an increase in the prediction levels reported by rodents for the same compounds. Positive compounds showed a high correlation among teratogenic parameters, pointing out at general developmental delay as major cause to explain the physiological/morphological malformations. A more detailed analysis based on deviations from main trends revealed potential specific modes of action for some compounds such as retinoic acid, DEAB, ochratoxin A, haloperidol, warfarin, valproic acid, acetaminophen, dasatinib, imatinib, dexamethasone, 6-aminonicotinamide and bisphenol A. The high degree of predictivity and the possibility of applying mechanistic approaches makes zebrafish a powerful model for screening teratogenicity.