Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
1.
J Environ Manage ; 358: 120893, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38640761

RESUMO

Herein, we demonstrate the prospects of tackling several environmental problems by transforming a local rice husk residue into an effective adsorbent, which was then applied for the treatment of real landfill leachate (LL). The study focused on establishing (i) the effect of simple washing on morphological aspects, (ii) evaluating target adsorption capacity for total iron (Fe) and nickel (Ni), (iii) determining regeneration and reuse potential of the adsorbent and (iv) complying to the requirements of worldwide legislations for reuse of treated LL wastewater. The adsorbent was prepared by employing a simple yet effective purification process that can be performed in situ. The LL was collected post-membrane treatment, and the characterizations revealed high concentrations of Fe, Ni, and organic matter content. The simple washing affected the crystallinity, resulting in structural alterations of the adsorbents, also increasing the porosity and specific surface. The adsorption process for Ni occurred naturally at pH 6, but adjusting the pH to 3 significantly improved removal efficiency and adsorption capacity for total Fe. The kinetics were accurately described by the pseudo-second-order model, while the Langmuir model provided a better fit for the isotherms. The adsorbent was stable for 5 reuses, and the metals adsorbed were recovered through basic leaching. The removal capacities achieved underscore the remarkable effectiveness of the process, ensuring the treated LL wastewater meets rigorous global environmental legislations for safe use in irrigation. Thus, by employing the compelling methods herein optimized it is possible to refer to the of solving three environmental problems at once.


Assuntos
Ferro , Níquel , Oryza , Poluentes Químicos da Água , Níquel/química , Oryza/química , Adsorção , Ferro/química , Poluentes Químicos da Água/química , Cinética , Águas Residuárias/química
2.
AAPS PharmSciTech ; 24(6): 168, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37552378

RESUMO

The expanding global cancer burden necessitates a comprehensive strategy to promote possible therapeutic interventions. Nanomedicine is a cutting-edge approach for treating cancer with minimal adverse effects. In the present study, chitosan-silver nanoparticles (ChAgNPs) containing Eugenol (EGN) were synthesized and evaluated for their anticancer activity against breast cancer cells (MCF-7). The physical, pharmacological, and molecular docking studies were used to characterize these nanoparticles. EGN had been effectively entrapped into hybrid NPs (84 ± 7%). The EGN-ChAgNPs had a diameter of 128 ± 14 nm, a PDI of 0.472 ± 0.118, and a zeta potential of 30.58 ± 6.92 mV. Anticancer activity was measured in vitro using an SRB assay, and the findings revealed that EGN-ChAgNPs demonstrated stronger anticancer activity against MCF-7 cells (IC50 = 14.87 ± 5.34 µg/ml) than pure EGN (30.72 ± 4.91 µg/ml). To support initial cytotoxicity findings, advanced procedures such as cell cycle analysis and genotoxicity were performed. Tumor weight reduction and survival rate were determined using different groups of mice. Both survival rates and tumor weight reduction were higher in the EGN-ChAgNPs (12.5 mg/kg) treated group than in the pure EGN treated group. Based on protein-ligand interactions, it might be proposed that eugenol had a favorable interaction with Aurora Kinase A. It was observed that C9 had the highest HYDE score of any sample, measuring at -6.8 kJ/mol. These results, in conjunction with physical and pharmacological evaluations, implies that EGN-ChAgNPs may be a suitable drug delivery method for treating breast cancer in a safe and efficient way.


Assuntos
Antineoplásicos , Quitosana , Nanopartículas Metálicas , Nanocompostos , Nanopartículas , Animais , Camundongos , Quitosana/farmacologia , Eugenol/farmacologia , Prata/farmacologia , Simulação de Acoplamento Molecular , Antineoplásicos/farmacologia
3.
Molecules ; 27(11)2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35684479

RESUMO

Two zinc(II) complexes, DBZ and DBZH4, that have (ZnN3S2) cores and differ in the bridging mode of the ligating backbone, effectively bind to BSA. The binding affinity varies as DBZ > DBZH4 and depends on the ligand structure. At low concentrations, both complexes exhibit dynamic quenching, whereas at higher concentrations they exhibit mixed (static and dynamic) quenching. The energy transfer mechanism from the BSA singlet excited state to DBZ and DBZH4, is highly likely according to steady-state fluorescence and time-correlated singlet photon counting. Molecular docking was used to support the mode of interaction of the complexes with BSA and showed that DBZ had more energy for binding. Furthermore, antibacterial testing revealed that both complexes were active but to a lesser extent than chloramphenicol. In comparison to DBZH4, DBZ has higher antibacterial activity, which is consistent with the binding constants, molecular docking, and particle size of adducts. These findings may have an impact on biomedicine.


Assuntos
Soroalbumina Bovina , Zinco , Antibacterianos/farmacologia , Sítios de Ligação , Biomimética , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Soroalbumina Bovina/química , Espectrometria de Fluorescência , Zinco/química
4.
Molecules ; 27(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36296481

RESUMO

Plants of the genus Strobilanthes have notable use in folklore medicines as well as being used for pharmacological purposes. The present work explored the biological predispositions of Strobilanthes glutinosus and attempted to accomplish a comprehensive chemical profile through GC-MS of different fractions concerning polarity (chloroform and n-butanol) and LC-ESI-MS of methanolic extract by both positive and negative ionization modes. The biological characteristics such as antioxidant potential were assessed by applying six different methods. The potential for clinically relevant enzyme (α-amylase, α-glucosidase, and tyrosinase) inhibition was examined. The DPPH, ABTS, CUPRAC, and FRAP results revealed that the methanol fraction presented efficient results. The phosphomolybdenum assay revealed that the n-hexane fraction showed the most efficient results, while maximum metal chelation potential was observed for the chloroform fraction. The GC-MS profiling of n-butanol and chloroform fractions revealed the existence of several (110) important compounds presenting different classes (fatty acids, phenols, alkanes, monoterpenes, diterpenes, sesquiterpenoids, and sterols), while LC-ESI-MS tentatively identified the presence of 44 clinically important secondary metabolites. The n-hexane fraction exhibited the highest potential against α-amylase (497.98 mm ACAE/g extract) and α-glucosidase (605.85 mm ACAE/g extract). Significant inhibitory activity against tyrosinase enzyme was displayed by fraction. Six of the prevailing compounds from the GC-MS study (lupeol, beta-amyrin, stigmasterol, gamma sitosterol, 9,12-octadecadienoic acid, and n-hexadecanoic acid) were modelled against α-glucosidase and α-amylase enzymes along with a comparison of binding affinity to standard acarbose, while three compounds identified through LC-ESI-MS were docked to the mushroom tyrosinase enzyme and presented with significant biding affinities. Thus, it is assumed that S. glutinosus demonstrated effective antioxidant and enzyme inhibition prospects with effective bioactive molecules, potentially opening the door to a new application in the field of medicine.


Assuntos
Plantas Medicinais , Plantas Medicinais/química , Antioxidantes/química , Monofenol Mono-Oxigenase , Sitosteroides , Metanol/química , alfa-Glucosidases , Cromatografia Gasosa-Espectrometria de Massas , Clorofórmio , Acarbose , 1-Butanol , Estigmasterol , Ácido Palmítico , Ácido Linoleico , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Inibidores Enzimáticos/química , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Fenóis/análise , alfa-Amilases , Monoterpenos , Alcanos
5.
Medicina (Kaunas) ; 58(10)2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36295550

RESUMO

Background and Objectives: An elevated procalcitonin level has classically been linked to bacterial infections. Data on the association between elevated procalcitonin and the outcome of coronavirus disease 2019 (COVID-19) are conflicting. Some linked it to associated bacterial co-infections, while others correlated the elevation with disease severity without coexisting bacterial infections. We aimed to investigate the association between high procalcitonin and the severity of COVID-19. Materials and Methods: Hospitalized patients with confirmed COVID-19 pneumonia were divided into two groups: the normal-procalcitonin group and the high-procalcitonin group (>0.05 ng/mL). Patients with concomitant bacterial infections on admission were excluded. The primary outcomes were the need for intensive care unit (ICU) admission, progression to invasive mechanical ventilation (IMV), and in-hospital 28-day mortality. Results: We included 260 patients in the normal procalcitonin group and 397 patients in the high procalcitonin group. The mean age was 55 years and 49% were females. A higher number of patients in the elevated procalcitonin group required ICU admission (32.7% vs. 16.2%, p < 0.001) and IMV (27.2% vs. 13.5%, p < 0.001). In-hospital mortality was significantly higher in the elevated procalcitonin group (18.9% vs. 8.5%, p < 0.001). After adjusting for other covariates, procalcitonin > 0.05 ng/mL was an independent predictor of progression to IMV (OR, 1.71; 95% CI, 1.08−2.71; p = 0.022), ICU admission (OR, 1.73; 95% CI, 1.13−2.66; p = 0.011), and in-hospital mortality (OR, 1.99; 95% CI, 1.14−3.47; p = 0.015). An elevated procalcitonin level was the strongest predictor of in-hospital mortality. Conclusions: Measurement of procalcitonin can have a prognostic role among COVID-19 patients. The admission procalcitonin level can identify patients at risk of ICU admission, progression to IMV, and in-hospital mortality.


Assuntos
COVID-19 , Pneumonia , Feminino , Humanos , Pessoa de Meia-Idade , Masculino , Pró-Calcitonina , SARS-CoV-2 , Estudos Retrospectivos , Unidades de Terapia Intensiva
6.
Wound Repair Regen ; 29(6): 1035-1050, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34129714

RESUMO

Dermal scarring from motor vehicle accidents, severe burns, military blasts, etc. is a major problem affecting over 80 million people worldwide annually, many of whom suffer from debilitating hypertrophic scar contractures. These stiff, shrunken scars limit mobility, impact quality of life, and cost millions of dollars each year in surgical treatment and physical therapy. Current tissue engineered scaffolds have mechanical properties akin to unwounded skin, but these collagen-based scaffolds rapidly degrade over 2 months, premature to dampen contracture occurring 6-12 months after injury. This study demonstrates a tissue engineered scaffold can be manufactured from a slow-degrading viscoelastic copolymer, poly(ι-lactide-co-ε-caprolactone), with physical and mechanical characteristics to promote tissue ingrowth and support skin-grafts. Copolymers were synthesized via ring-opening polymerization. Solvent casting/particulate leaching was used to manufacture 3D porous scaffolds by mixing copolymers with particles in an organic solvent followed by casting into molds and subsequent particle leaching with water. Scaffolds characterized through SEM, micro-CT, and tensile testing confirmed the required thickness, pore size, porosity, modulus, and strength for promoting skin-graft bioincorporation and dampening fibrosis in vivo. Scaffolds were Oxygen Plasma Treatment and collagen coated to encourage cellular proliferation. Porosity ranging from 70% to 90% was investigated in a subcutaneous murine model and found to have no clinical effect on tissue ingrowth. A swine full-thickness skin wound model confirmed through histology and Computer Planimetry that scaffolds promote skin-graft survival, with or without collagen coating, with equal safety and efficacy as a commercially available tissue engineered scaffold. This study validates a scalable method to create poly(ι-lactide-co-ε-caprolactone) scaffolds with appropriate characteristics and confirms in mouse and swine wound models that the scaffolds are safe and effective at supporting skin-grafts. The results of this study have brought us closer towards developing an alternative technology that supports skin grafts with the potential to investigate long-term hypertrophic scar contractures.


Assuntos
Transplante de Pele , Engenharia Tecidual , Animais , Caproatos , Colágeno , Lactonas , Camundongos , Poliésteres , Qualidade de Vida , Suínos , Alicerces Teciduais , Cicatrização
7.
Reprod Domest Anim ; 56(2): 370-373, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32996263

RESUMO

Calving ease (CE) is a trait of economic importance that affects animal welfare and farm profitability. The objective of present study was to investigate genetic and environmental factors affecting CE among Primiparous (PP) and multiparous (MP) buffaloes. A total of 9,627 records from 1999 MP and 2,110 PP recorded during the period from 1988 to 2018 were considered. Herd, season of calving, year of calving, birth weight, parity order and gestation length significantly affected CE rate, while age at first calving and sex of calf had no significant effects. Direct and maternal heritabilities of CE in PP and MP were 0.06 and 0.01, respectively. The low heritability of CE indicated that direct selection may not be an effective method to improve CE trait in Egyptian buffalo.


Assuntos
Búfalos/fisiologia , Paridade/fisiologia , Parto/fisiologia , Fatores Etários , Animais , Peso ao Nascer/fisiologia , Cruzamento , Búfalos/genética , Feminino , Masculino , Parto/genética , Gravidez/genética , Gravidez/fisiologia , Estações do Ano
8.
J Mol Struct ; 1228: 129459, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33082599

RESUMO

COVID-19, the pandemic disease recently discovered in Wuhan (China), severely spread and affected both social and economic activity all over the world. Attempts to find an effective vaccine are challenging, time-consuming though interminable. Hence, re-proposing effective drugs is reliable and effective alternative. Taking into account the genome similarity of COVID-19 with SARS-CoV, drugs with safety profiles could be fast solution. Clinical trials encouraged the use of Chloroquine and Hydroxychloroquine for COVID-19 inhibition. One of the possible inhibition pathways is the competitive binding with the angiotension-converting enzyme-2 (ACE-2), in particular with the cellular Sialic acid (Neu5Ac). Here, we investigate the possible binding mechanism of ClQ and ClQOH with sialic acid both in the gas phase and in water using density functional theory (DFT). We investigated the binding of the neutral, monoprotonated and diprotonated ClQs and ClQOHs to sialic acid to simulate the pH effect on the cellular receptor binding. DFT results reveals that monoprotonated ClQ+ and ClQOH+, which account for more than 66% in the solution, possess high reactivity and binding towards sialic acid. The Neu5Ac-ClQ and the analogues Neu5Ac-ClQOH adducts were stabilized in water than in the gas phase. The molecular complexes stabilize by strong hydrogen bonding and π - π stacking forces. In addition, proton-transfer in Neu5Ac-ClQOH+ provides more stabilizing power and cellular recognition binding forces. These results shed light on possible recognition mechanism and help future breakthroughs for COVID-19 inhibitors.

9.
Exp Lung Res ; 45(7): 200-208, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31298956

RESUMO

Aim: The aim of this study was to investigate the short-term effect of levofloxacin on the microbiota of healthy lungs. Material and methods: Male F344 rats received either no levofloxacin (n = 9), intravenous levofloxacin (n = 12), oral levofloxacin (n = 12), or subcutaneous levofloxacin (n = 14). Rats received a clinically applicable dose (5.56 mg/kg) of levofloxacin via the assigned delivery route once daily for three days. On day four, lung tissue was collected and the lung microbiota composition was investigated using 16S ribosomal RNA gene sequencing. Results: Untreated lungs showed a microbiota dominated by bacteria of the genera Serratia. After treatment with levofloxacin, bacteria of the genus Pantoea dominated the lung microbiota. This was observed for all routes of antibiotic administration, with a significant difference compared to no-antibiotic control group (PERMANOVA: P < 0.001; homogeneity of dispersions: P = 0.656). Conclusion: Our study is the first to demonstrate the effects of levofloxacin therapy on lung microbiota in laboratory rats. Levofloxacin treatment by any route of administration leads to profound changes in the rat lung microbiota, resulting in the predominance of bacteria belonging to the genus Pantoea. Further studies regarding the role of long-term application of broad spectrum antibiotics on induction of lung, allergic and autoimmune diseases are indicated.


Assuntos
Antibacterianos/efeitos adversos , Levofloxacino/efeitos adversos , Pulmão/microbiologia , Microbiota/efeitos dos fármacos , Animais , Avaliação Pré-Clínica de Medicamentos , Pulmão/efeitos dos fármacos , Masculino , Ratos Endogâmicos F344
10.
Ann Plast Surg ; 82(2): 229-232, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30570561

RESUMO

Plastic surgery continues to be one of the most competitive programs into which medical students attempt to match. The reasons for this include the complexity and diversity of cases, the opportunity to interact with multiple specialties, patient and surgeon satisfaction, and the potential for higher compensation compared with other specialties. The disparity between the relatively small number of plastic surgery residency positions and the large number of highly competitive candidates has created challenges for both the applicant and the residency program director. This challenge is even greater for international medical graduates because of traditional preconceived notions about the quality of the applicants. The authors sought to determine existing beliefs about international medical graduates among plastic surgeons.


Assuntos
Internato e Residência/organização & administração , Seleção de Pessoal , Cirurgia Plástica/educação , Escolha da Profissão , Competência Clínica , Currículo , Educação de Pós-Graduação em Medicina/organização & administração , Humanos , Estudantes de Medicina/estatística & dados numéricos , Estados Unidos
12.
Adv Skin Wound Care ; 30(4): 169-180, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28301357

RESUMO

BACKGROUND: Hemostasis, the initial phase of wound healing, sets the stage for tissue repair. Microporous polysaccharide hemosphere powder (MPH) is an FDA-approved hemostatic agent that may impact the wound-healing process. OBJECTIVE: This study examined the role of MPH in murine wild-type and diabetic (db/db) wound-healing models and a foreign body response scarring model. METHODS: The powder was topically applied to excisional wounds in wild-type C57BL/6 mice and db/db mice. The effect of MPH on scarring was evaluated by applying it to the expanded polytetrafluoroethylene tube implantation model. RESULTS: In wild-type mice, topically applied MPH increased epithelial thickness. Levels of α-smooth muscle actin (α-SMA) were decreased in MPH-treated wild-type wounds, whereas Rho-associated protein kinase 2 (ROCK2) and transforming growth factor ß levels were increased. In db/db mice, topical wound MPH application decreased epithelial thickness and delayed wound closure. The db/db wounds displayed an increased collagen index. The ROCK2 was increased in a similar manner to wild-type mice, whereas α-SMA and transforming growth factor ß levels were decreased. The MPH-treated expanded polytetrafluoroethylene tube mice showed increased α-SMA levels and depressed ROCK2 levels. There were no changes in histologic parameters of the foreign body response. CONCLUSIONS: The results suggest that MPH does not adversely impact wound healing in wild-type mice, both topically and around implants, but prolongs time to closure and diminishes thickness in db/db wounds. The MPH application alters contractile proteins in all wound models. These changes could have downstream effects on the wound healing process, and further investigation into the use of MPH in altered or impaired states of wound healing is warranted.


Assuntos
Cicatriz/tratamento farmacológico , Hemostáticos/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Materiais Biocompatíveis , Modelos Animais de Doenças , Feminino , Hemostáticos/uso terapêutico , Camundongos , Camundongos Endogâmicos C57BL , Polissacarídeos , Politetrafluoretileno , Porosidade , Pós
13.
J Neurophysiol ; 116(2): 904-16, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27281748

RESUMO

Anatomical, physiological, and functional connectivity exists between the neurons of the primary motor cortex (M1) and spinal cord. Paired associative stimulation (PAS) produces enduring changes in M1, based on the Hebbian principle of associative plasticity. The present study aimed to establish neurophysiological changes in human cortical and spinal neuronal circuits by pairing noninvasive transspinal stimulation with transcortical stimulation via transcranial magnetic stimulation (TMS). We delivered paired transspinal and transcortical stimulation for 40 min at precise interstimulus intervals, with TMS being delivered after (transspinal-transcortical PAS) or before (transcortical-transspinal PAS) transspinal stimulation. Transspinal-transcortical PAS markedly decreased intracortical inhibition, increased intracortical facilitation and M1 excitability with concomitant decreases of motor threshold, and reduced the soleus Hoffmann's reflex (H-reflex) low frequency-mediated homosynaptic depression. Transcortical-transspinal PAS did not affect intracortical circuits, decreased M1 excitability, and reduced the soleus H-reflex-paired stimulation pulses' mediated postactivation depression. Both protocols affected the excitation threshold of group Ia afferents and motor axons. These findings clearly indicate that the pairing of transspinal with transcortical stimulation produces cortical and spinal excitability changes based on the timing interval and functional network interactions between the two associated inputs. This new PAS paradigm may constitute a significant neuromodulation method with physiological impact, because it can be used to alter concomitantly excitability of intracortical circuits, corticospinal neurons, and spinal inhibition in humans.


Assuntos
Córtex Cerebral/citologia , Estimulação Elétrica/métodos , Potencial Evocado Motor/fisiologia , Neurônios Motores/fisiologia , Medula Espinal/citologia , Estimulação Magnética Transcraniana , Adulto , Análise de Variância , Biofísica , Eletromiografia , Feminino , Reflexo H/fisiologia , Humanos , Masculino , Rede Nervosa/fisiologia , Vias Neurais/fisiologia , Plasticidade Neuronal/fisiologia , Medula Espinal/fisiologia , Nervo Tibial/fisiologia , Adulto Jovem
14.
J Nanobiotechnology ; 14(1): 49, 2016 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-27334743

RESUMO

BACKGROUND: Engineering microorganisms in order to improve the metabolite flux needs a detailed knowledge of the concentrations and flux rates of metabolites and metabolic intermediates in vivo. Fluorescence resonance energy transfer (FRET) based genetically encoded nanosensors represent a promising tool for measuring the metabolite levels and corresponding rate changes in live cells. Here, we report the development of a series of FRET based genetically encoded nanosensor for real time measurement of lysine at cellular level, as the improvement of microbial strains for the production of L-lysine is of major interest in industrial biotechnology. RESULTS: The lysine binding periplasmic protein (LAO) from Salmonella enterica serovar typhimurium LT2 strain was used as the reporter element for the sensor. The LAO was sandwiched between GFP variants i.e. cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP). Affinity, pH stability, specificity and metal ions effects was scrutinized for the in vitro characterization of this nanosensor, named as FLIPK. The FLIPK is specific to lysine and found to be stable with the pH within the physiological range. The calculated affinity (K d ) of FLIPK was 97 µM. For physiological applications, mutants with different binding affinities were also generated and investigated in vitro. The developed nanosensor efficiently monitored the intracellular level of lysine in bacterial as well as yeast cell. CONCLUSION: The developed novel lysine fluorescence resonance energy transfer sensors can be used for in vivo monitoring of lysine levels in prokaryotes as well as eukaryotes. The potential of these sensors is that they can be used as reporter tools in the development of metabolically engineered microbial strains or for real-time monitoring of intracellular lysine during fermentation.


Assuntos
Proteínas de Bactérias/metabolismo , Técnicas Biossensoriais/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Lisina/análise , Imagem Óptica/métodos , Saccharomyces cerevisiae/citologia , Salmonella typhi/metabolismo , Proteínas de Bactérias/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Corantes Fluorescentes/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Lisina/metabolismo , Modelos Moleculares , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Salmonella typhi/genética
15.
Lab Invest ; 95(12): 1429-38, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26367489

RESUMO

Wound contraction facilitates tissue repair. The correct balance between too little contraction, which leads to non-healing wounds, and too much contraction, which leads to contractures, is important for optimal healing. Thus, understanding which cells cause wound contraction is necessary to optimize repair. Wound contraction is hypothesized to develop from myofibroblast (cells which express alpha-smooth muscle actin; ACTA2) contractility, while the role of fibroblast contractility is unknown. In this study, we utilized ACTA2 null mice to determine what role fibroblasts play in wound contraction. Human scar contractures were immunostained for ACTA2, beta-cytoplasmic actin (ACTB), and gamma-cytoplasmic actin (ACTG1). Full-thickness cutaneous wounds were created on dorsum of ACTA2(+/+) mice and strain-matching ACTA2(+/-) and ACTA2(-/-) mice. Wound contraction was quantified. Tissue was harvested for histologic, immunohistochemical and protein analysis. Compared with surrounding unwounded skin, human scar tissue showed increased expression of ACTA2, ACTB, and ACTG1. ACTA2 was focally expressed in clusters. ACTB and ACTG1 were widely, highly expressed throughout scar tissue. Wound contraction was significantly retarded in ACTA2(-/-) mice, as compared to ACTA2(+/+) controls. Control mice had increased epithelialization, cell proliferation, and neovascularization. ACTA2(-/-) mice had lower levels of apoptosis, and fewer total numbers of cells. Smaller amount of collagen deposition and immature collagen organization in ACTA2(-/-) mice demonstrate that wounds were more immature. These data demonstrate that myofibroblasts contribute to but are not necessary for wound contraction. Mechanisms by which fibroblasts promote wound contraction may include activation of contractile signaling pathways, which promote interaction between non-muscle myosin II and ACTB and ACTG1.


Assuntos
Actinas/metabolismo , Miofibroblastos/fisiologia , Cicatrização , Animais , Biomarcadores/metabolismo , Colágeno/metabolismo , Feminino , Humanos , Masculino , Camundongos , Neovascularização Fisiológica , Pele/metabolismo , Adulto Jovem
16.
J Neurophysiol ; 114(3): 1486-99, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26108955

RESUMO

Functional neuroplasticity in response to stimulation and motor training is a well-established phenomenon. Transcutaneous stimulation of the spine is used mostly to alleviate pain, but it may also induce functional neuroplasticity, because the spinal cord serves as an integration center for descending and ascending neuronal signals. In this work, we examined whether long-lasting noninvasive cathodal (c-tsCCS) and anodal (a-tsCCS) transspinal constant-current stimulation over the thoracolumbar enlargement can induce cortical, corticospinal, and spinal neuroplasticity. Twelve healthy human subjects, blind to the stimulation protocol, were randomly assigned to 40 min of c-tsCCS or a-tsCCS. Before and after transspinal stimulation, we established the afferent-mediated motor evoked potential (MEP) facilitation and the subthreshold transcranial magnetic stimulation (TMS)-mediated flexor reflex facilitation. Recruitment input-output curves of MEPs and transspinal evoked potentials (TEPs) and postactivation depression of the soleus H reflex and TEPs was also established. We demonstrate that both c-tsCCS and a-tsCCS decrease the afferent-mediated MEP facilitation and alter the subthreshold TMS-mediated flexor reflex facilitation in a polarity-dependent manner. Both c-tsCCS and a-tsCCS increased the tibialis anterior MEPs recorded at 1.2 MEP resting threshold, intermediate, and maximal intensities and altered the recruitment input-output curve of TEPs in a muscle- and polarity-dependent manner. Soleus H-reflex postactivation depression was reduced after a-tsCCS and remained unaltered after c-tsCCS. No changes were found in the postactivation depression of TEPs after c-tsCCS or a-tsCCS. Our findings reveal that c-tsCCS and a-tsCCS have distinct effects on cortical and corticospinal excitability. This method can be utilized to induce targeted neuroplasticity in humans.


Assuntos
Córtex Cerebral/fisiologia , Plasticidade Neuronal , Tratos Piramidais/fisiologia , Estimulação Elétrica Nervosa Transcutânea/métodos , Adulto , Potencial Evocado Motor , Feminino , Humanos , Masculino , Distribuição Aleatória , Estimulação Elétrica Nervosa Transcutânea/efeitos adversos
17.
ScientificWorldJournal ; 2014: 634828, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25587570

RESUMO

Digital watermarking is one of the important techniques to secure digital media files in the domains of data authentication and copyright protection. In the nonblind watermarking systems, the need of the original host file in the watermark recovery operation makes an overhead over the system resources, doubles memory capacity, and doubles communications bandwidth. In this paper, a robust video multiple watermarking technique is proposed to solve this problem. This technique is based on image interlacing. In this technique, three-level discrete wavelet transform (DWT) is used as a watermark embedding/extracting domain, Arnold transform is used as a watermark encryption/decryption method, and different types of media (gray image, color image, and video) are used as watermarks. The robustness of this technique is tested by applying different types of attacks such as: geometric, noising, format-compression, and image-processing attacks. The simulation results show the effectiveness and good performance of the proposed technique in saving system resources, memory capacity, and communications bandwidth.


Assuntos
Segurança Computacional , Interpretação de Imagem Assistida por Computador/métodos , Gravação em Vídeo , Análise de Ondaletas , Simulação por Computador
18.
Front Mol Biosci ; 11: 1423351, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39130374

RESUMO

Parasympathetic activation in the anterior eye segment regulates various physiological functions. This process, mediated by muscarinic acetylcholine receptors, also impacts intraocular pressure (IOP) through the trabecular meshwork. While FDA-approved M3 muscarinic receptor (M3R) agonists exist for IOP reduction, their systemic cholinergic adverse effects pose limitations in clinical use. Therefore, advancing our understanding of the cholinergic system in the anterior segment of the eye is crucial for developing additional IOP-reducing agents with improved safety profiles. Systems genetics analyses were utilized to explore correlations between IOP and the five major muscarinic receptor subtypes. Molecular docking and dynamics simulations were applied to human M3R homology model using a comprehensive set of human M3R ligands and 1,667 FDA-approved or investigational drugs. Lead compounds from the modeling studies were then tested for their IOP-lowering abilities in mice. Systems genetics analyses unveiled positive correlations in mRNA expressions among the five major muscarinic receptor subtypes, with a negative correlation observed only in M3R with IOP. Through modeling studies, rivastigmine and edrophonium emerged as the most optimally suited cholinergic drugs for reducing IOP via a potentially distinct mechanism from pilocarpine or physostigmine. Subsequent animal studies confirmed comparable IOP reductions among rivastigmine, edrophonium, and pilocarpine, with longer durations of action for rivastigmine and edrophonium. Mild cholinergic adverse effects were observed with pilocarpine and rivastigmine but absent with edrophonium. These findings advance ocular therapeutics, suggesting a more nuanced role of the parasympathetic system in the anterior eye segment for reducing IOP than previously thought.

19.
ACS Omega ; 9(15): 17563-17576, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38645369

RESUMO

Transition-metal oxide has been identified as an auspicious material for supercapacitors due to its exceptional capacity. The inadequate electrochemical characteristics, such as prolonged cycle stability, can be ascribed to factors, such as low electrical conductivity, sluggish reaction kinetics, and a deficiency of active sites. The transition-metal oxides derived from the MOF materials offer a larger surface area with enriched active sites and a faster reaction rate along with good electrical conductivity. The manganese (Mn)-based metal-organic framework (MOF)-derived materials were produced using the pyrolysis method. Zeolitic imidazolate frameworks (ZIF-67) were fabricated in water at ambient temperature with the aid of triethylamine. Multiple techniques were used to examine the characteristics of the fabricated electrode materials. The influence of the electrolyte on the electrochemical activity of the Mn3O4@N-doped C electrode materials was determined in KOH, NaOH, and LiOH. For manufacturing of "Mn3O4@N-doped C", ZIF-67 was used as a precursor. The capacitive performance of the Mn3O4@N-doped C electrode increased as a result of nitrogen-doped carbon; after 5000th cycles, the electrode retained an excellent rate capability and a high specific capacitance (Cs) of 980 F g-1 at 1 A g-1 under 2.0 KOH electrolyte in a three electrode system. The carbonized manganese oxide displays also had a high Cs of 686 F g-1 in two electrode systems in 2.0 M KOH. Materials made from MOFs show promise as capacitive materials for applications in energy conversion storage owing to their straightforward synthesis and strong electrochemical performance.

20.
Carbohydr Res ; 543: 109207, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39018698

RESUMO

Folic acid receptor-targeted drug delivery system is a promising candidate for tumor-targeted delivery because its elevated expression specifically on tumor cells enables the selective delivery of cytotoxic cargo to cancerous tissue, thereby minimizing toxic side effects and increasing the therapeutic index. Pyridine bisfolate-chitosan (PyBFA@CS NPs) and folate-chitosan nanocomposite (FA@CS NPs) were synthesized with suitable particle size (256.0 ± 15.0 and 161.0 ± 5.0 nm), high stability (ζ = -27.0 ± 0.1 and -30.0 ± 0.2 mV), respectively, and satisfactory biocompatibility to target cells expressing folate receptors and try to answer the question: Is the metal center always important for activity? Since almost all pharmaceuticals work by binding to specific proteins or DNA, the in vitro binding of human serum albumin (HSA) to PyBFA@CS NPs and FA@CS NPs has been investigated and compared with PyBFA. Strong affinity to HSA is shown by quenching and binding constants in the range of 105 and 104 M-1, respectively with PyBFA@CS NPs showing the strongest. The compounds-HSA kinetic stability, affinity, and association constants were investigated using a stopped-flow method. The findings showed that all formulations bind by a static quenching mechanism that consists of two reversible steps: rapid second-order binding and a more slowly first-order isomerization reaction. The overall coordination affinity of HSA to PyBFA@CS NPs (6.6 × 106 M-1), PyBFA (4.4 × 106 M-1), and FA@CS NPs (1.3 × 106 M-1) was measured and The relative reactivity is roughly (PyBFA@CS NPs)/(PyBFA)/(FA@CS NPs) = 5/3/1. Additionally, in vitro cytotoxicity revealed that, consistent with the binding constants and coordination affinity, active-targeting formulations greatly inhibited FR-positive MCF-7 cells in compared to FRs-negative A549 cells in the following trend: PyBFA@CS NPs > PyBFA > FA@CS NPs. Furthermore, in vitro drug release of PyBFA@CS NPs was found to be stable in PBS at pH 7.4, however, the in pH 5.4 and in pH 5.4 containing 10 mM glutathione (GSH) (mimicking the tumor microenvironment) reached 43 % and 73 %, respectively indicating that the PyBFA@CS NPs system is sensitive to GSH. Folate-modified nanoparticles, PyBFA@CS NPs, are a promising therapeutic for MCF-7 therapy because they not only showed a greater affinity for HSA, but also showed higher cleavage efficiency toward the minor groove of pBR322 DNA via the hydrolytic way, as well as effective antibacterial activity that avoids the usage of extra antibiotics.‬‬‬‬‬‬‬‬‬‬‬‬ ‬‬‬‬‬‬‬‬‬‬‬‬‬‬.


Assuntos
Quitosana , Ácido Fólico , Glutationa , Nanopartículas , Piridinas , Humanos , Quitosana/química , Quitosana/farmacologia , Células MCF-7 , Ácido Fólico/química , Nanopartículas/química , Piridinas/química , Piridinas/farmacologia , Glutationa/química , Glutationa/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/química , Portadores de Fármacos/química , Sobrevivência Celular/efeitos dos fármacos , Receptores de Folato com Âncoras de GPI/metabolismo , Sistemas de Liberação de Medicamentos , Albumina Sérica Humana/química , Albumina Sérica Humana/metabolismo , Liberação Controlada de Fármacos , Proliferação de Células/efeitos dos fármacos , Tamanho da Partícula
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA