Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Bioorg Med Chem Lett ; 90: 129327, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37187253

RESUMO

Positron emission tomography (PET) is a powerful imaging tool that enables early in vivo detection of Alzheimer's disease (AD). For this purpose, various PET ligands have been developed to image ß-amyloid and tau protein aggregates characteristically found in the brain of AD patients. In this study, we initiated to develop another type of PET ligand that targets protein kinase CK2 (formerly termed as casein kinase II), because its expression level is known to be altered in postmortem AD brains. CK2 is a serine/threonine protein kinase, an important component of cellular signaling pathways that control cellular degeneration. In AD, the CK2 level in the brain is thought to be elevated by its involvement in both phosphorylation of proteins such as tau and neuroinflammation. Decreased CK2 activity and expression levels lead to ß-amyloid accumulation. In addition, since CK2 also contributes to the phosphorylation of tau protein, the expression level and activity of CK2 is expected to undergo significant changes during the progression of AD pathology. Furthermore, CK2 could act as a potential target for modulating the inflammatory response in AD. Therefore, PET imaging targeting CK2 expressed in the brain could be a useful another imaging biomarker for AD. We synthesized and radiolabeled a CK2 inhibitor, [11C]GO289, in high yields from its precursor and [11C]methyl iodide under basic conditions. On autoradiography, [11C]GO289 specifically bound to CK2 in both rat and human brain sections. On baseline PET imaging, this ligand entered and rapidly washed out of the rat brain with its peak activity rather being small (SUV < 1.0). However, on blocking, there was no detectable CK2 specific binding signal. Thus, [11C]GO289 may be useful in vitro but not so in vivo in its current formulation. The lack of detectable specific binding signal in the latter may be due to a relatively high component of nonspecific binding signal in the overall rather weak PET signal, or it may also be related to the known fact that ATP can competitively binds to subunits of CK2, reducing its availability for this ligand. In the future, it will be necessary for PET imaging of CK2 to try out different non-ATP competitive formulations of CK2 inhibitor that can also provide significantly higher in vivo brain penetration.


Assuntos
Doença de Alzheimer , Caseína Quinase II , Humanos , Ratos , Animais , Ligantes , Tomografia por Emissão de Pósitrons/métodos , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/metabolismo
2.
Bioorg Med Chem Lett ; 85: 129212, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36871703

RESUMO

Recently, retinoid actions on the central nervous system (CNS) have attracted considerable attention from the perspectives of brain disease diagnosis and drug development. Firstly, we successfully synthesized [11C]peretinoin esters (methyl, ethyl, and benzyl) using a Pd(0)-mediated rapid C-[11C]methylation of the corresponding stannyl precursors without geometrical isomerization in 82%, 66%, and 57% radiochemical yields (RCYs). Subsequent hydrolysis of the 11C-labeled ester produced [11C]peretinoin in 13 ± 8% RCY (n = 3). After pharmaceutical formulation, the resulting [11C]benzyl ester and [11C]peretinoin had high radiochemical purity (>99% each) and molar activities of 144 and 118 ± 49 GBq µmol-1 at total synthesis times of 31 min and 40 ± 3 min, respectively. Rat brain PET imaging for the [11C]ester revealed a unique time-radioactivity curve, suggesting the participation of the acid [11C]peretinoin for the brain permeability. However, the curve of the [11C]peretinoin rose steadily after a shorter time lag to reach 1.4 standardized uptake value (SUV) at 60 min. These various phenomena between the ester and acid became more pronounced in the monkey brain (SUV of > 3.0 at 90 min). With the opportunity to identify high brain uptake of [11C]peretinoin, we discovered CNS activities of a drug candidate called peretinoin, such as the induction of a stem-cell to neuronal cell differentiation and the suppression of neuronal damages.


Assuntos
Antineoplásicos , Retinoides , Ratos , Animais , Metilação , Retinoides/farmacologia , Antineoplásicos/farmacologia , Encéfalo/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos/farmacologia
3.
Eur J Nucl Med Mol Imaging ; 49(4): 1127-1135, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34651222

RESUMO

PURPOSE: Histamine H3 receptor antagonists and inverse agonists have been extensively developed to treat sleep-wake, neurocognitive, and allied disorders. However, potential adverse effects, including insomnia, hampered the clinical use of these drugs, possibly due to their persistent interaction with the target molecules. The purpose of the present study was to estimate the pharmacokinetics and pharmacodynamics of enerisant, a novel antagonist and inverse agonist for histamine H3 receptors. METHODS: To measure the histamine H3 receptor occupancy by enerisant, positron emission tomography studies using [11C]TASP457, a specific radioligand for histamine H3 receptors, were performed in 12 healthy men at baseline and at 2 h after oral administration of enerisant hydrochloride. For three of these subjects, two additional scans were performed at 6 and 26 h after the administration. Relationships between the receptor occupancy by enerisant and its dose and plasma concentrations were then analyzed. RESULTS: Administration of enerisant hydrochloride decreased the radioligand binding in a dose-dependent manner. The estimated receptor occupancy values at 2 h varied as a function of its dose or plasma concentration. The time course of the occupancy showed persistently high levels (> 85%) in the two subjects with higher doses (25 and 12.5 mg). The occupancy was also initially high at 2 h and 6 h with the lower dose of 5 mg, but it decreased to 69.7% at 26 h. CONCLUSION: The target engagement of enerisant was demonstrated in the brains of living human subjects. The occupancy of histamine H3 receptors by enerisant at 2 h can be predicted by applying the plasma concentration of enerisant to Hill's plot. The preliminary time-course investigation showed persistently high brain occupancy with high doses of enerisant despite the decreasing plasma concentration of the drug. Five milligrams or less dose would be appropriate for the treatment for narcolepsy with initially high occupancy allowing for effective treatment of narcolepsy, and then the occupancy level would be expected to decrease to a level to avoid this drug's unwanted side effect of insomnia at night, although further research is warranted to confirm the statement since the expected decrease is based on the finding in one subject. TRIAL REGISTRATION: This study was retrospectively registered with ClinicalTrials.gov (NCT04631276) on November 17, 2020.


Assuntos
Narcolepsia , Fármacos Neuroprotetores , Receptores Histamínicos H3 , Distúrbios do Início e da Manutenção do Sono , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Histamina/metabolismo , Humanos , Ligantes , Masculino , Narcolepsia/metabolismo , Niacinamida , Tomografia por Emissão de Pósitrons/métodos , Piridinas , Quinolonas , Receptores Histamínicos H3/metabolismo , Distúrbios do Início e da Manutenção do Sono/metabolismo
4.
Eur J Nucl Med Mol Imaging ; 49(9): 3150-3161, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35022846

RESUMO

PURPOSE: Monoacylglycerol lipase (MAGL) regulates cannabinoid neurotransmission and the pro-inflammatory arachidonic acid pathway by degrading endocannabinoids. MAGL inhibitors may accordingly act as cannabinoid-potentiating and anti-inflammatory agents. Although MAGL dysfunction has been implicated in neuropsychiatric disorders, it has never been visualized in vivo in human brain. The primary objective of the current study was to visualize MAGL in the human brain using the novel PET ligand 18F-T-401. METHODS: Seven healthy males underwent 120-min dynamic 18F-T-401-PET scans with arterial blood sampling. Six subjects also underwent a second PET scan with 18F-T-401 within 2 weeks of the first scan. For quantification of MAGL in the human brain, kinetic analyses using one- and two-tissue compartment models (1TCM and 2TCM, respectively), along with multilinear analysis (MA1) and Logan graphical analysis, were performed. Time-stability and test-retest reproducibility of 18F-T-401-PET were also evaluated. RESULTS: 18F-T-401 showed rapid uptake and gradual washout from the brain. Logan graphical analysis showed linearity in all subjects, indicating reversible radioligand kinetics. Using a metabolite-corrected arterial input function, MA1 estimated regional total distribution volume (VT) values by best identifiability. VT values were highest in the cerebral cortex, moderate in the thalamus and putamen, and lowest in white matter and the brainstem, which was in agreement with regional MAGL expression in the human brain. Time-stability analysis showed that MA1 estimated VT values with a minimal bias even using truncated 60-min scan data. Test-retest reliability was also excellent with the use of MA1. CONCLUSIONS: Here, we provide the first demonstration of in vivo visualization of MAGL in the human brain. 18F-T-401 showed excellent test-retest reliability, reversible kinetics, and stable estimation of VT values consistent with known regional MAGL expressions. PET with 18F-T-401-PET is promising tool for measurement of central MAGL.


Assuntos
Canabinoides , Monoacilglicerol Lipases , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Canabinoides/metabolismo , Humanos , Masculino , Monoacilglicerol Lipases/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Reprodutibilidade dos Testes , Distribuição Tecidual
5.
Bioorg Med Chem Lett ; 65: 128704, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35351586

RESUMO

Colony-stimulating factor 1 receptors (CSF1R) are expressed exclusively on microglia in the central nervous system. The receptors regulate immune responses by controlling the survival and activity of microglia and are intricately involved in the pathophysiology of Alzheimer's disease. In this study, we developed [11C]NCGG401, a positron emission tomography (PET) ligand, targeting for CSF1R as an imaging biomarker for microglial pathophysiology in Alzheimer's disease. NCGG401 showed a high potency to inhibit human CSF1R kinase activity and a high binding affinity to human CSF1R. PET imaging with [11C]NCGG401 in healthy rats showed a good brain permeability. Furthermore, the specific binding component was determined by postmortem autoradiography in rat brain and human hippocampal sections. The knowledge of the characteristics of [11C]NCCC401, our initial CSF1R compound, we have obtained may be useful for further development and optimization of CSF1R radioligands for PET imaging of microglia.


Assuntos
Doença de Alzheimer , Fator Estimulador de Colônias de Macrófagos , Doença de Alzheimer/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Modelos Animais de Doenças , Ligantes , Fator Estimulador de Colônias de Macrófagos/metabolismo , Microglia/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Ratos , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos
6.
Eur J Nucl Med Mol Imaging ; 48(9): 2846-2855, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33566152

RESUMO

PURPOSE: Phosphodiesterase 7 (PDE7) is an enzyme that selectively hydrolyses cyclic adenosine monophosphate, and its dysfunction is implicated in neuropsychiatric diseases. However, in vivo visualization of PDE7 in human brains has hitherto not been possible. Using the novel PET ligand 11C-MTP38, which we recently developed, we aimed to image and quantify PDE7 in living human brains. METHODS: Seven healthy males underwent a 90-min PET scan after injection of 11C-MTP38. We performed arterial blood sampling and metabolite analysis of plasma in six subjects to obtain a metabolite-corrected input function. Regional total distribution volumes (VTs) were estimated using compartment models, and Logan plot and Ichise multilinear analysis (MA1). We further quantified the specific radioligand binding using the original multilinear reference tissue model (MRTMO) and standardized uptake value ratio (SUVR) method with the cerebellar cortex as reference. RESULTS: PET images with 11C-MTP38 showed relatively high retentions in several brain regions, including in the striatum, globus pallidus, and thalamus, as well as fast washout from the cerebellar cortex, in agreement with the known distribution of PDE7. VT values were robustly estimated by two-tissue compartment model analysis (mean VT = 4.2 for the pallidum), Logan plot, and MA1, all in excellent agreement with each other, suggesting the reversibility of 11C-MTP38 binding. Furthermore, there were good agreements between binding values estimated by indirect method and those estimated by both MRTMO and SUVR, indicating that these methods could be useful for reliable quantification of PDE7. Because MRTMO and SUVR do not require arterial blood sampling, they are the most practical for the clinical use of 11C-MTP38-PET. CONCLUSION: We have provided the first demonstration of PET visualization of PDE7 in human brains. 11C-MTP38 is a promising novel PET ligand for the quantitative investigation of central PDE7.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 7 , Tomografia por Emissão de Pósitrons , Algoritmos , Encéfalo/diagnóstico por imagem , Humanos , Ligantes , Masculino , Compostos Radiofarmacêuticos
7.
Brain ; 142(10): 3265-3279, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504227

RESUMO

Tau deposits is a core feature of neurodegenerative disorder following traumatic brain injury (TBI). Despite ample evidence from post-mortem studies demonstrating exposure to both mild-repetitive and severe TBIs are linked to tau depositions, associations of topology of tau lesions with late-onset psychiatric symptoms due to TBI have not been explored. To address this issue, we assessed tau deposits in long-term survivors of TBI by PET with 11C-PBB3, and evaluated those associations with late-life neuropsychiatric outcomes. PET data were acquired from 27 subjects in the chronic stage following mild-repetitive or severe TBI and 15 healthy control subjects. Among the TBI patients, 14 were diagnosed as having late-onset symptoms based on the criteria of traumatic encephalopathy syndrome. For quantification of tau burden in TBI brains, we calculated 11C-PBB3 binding capacity (cm3), which is a summed voxel value of binding potentials (BP*ND) multiplied by voxel volume. Main outcomes of the present study were differences in 11C-PBB3 binding capacity between groups, and the association of regional 11C-PBB3 binding capacity with neuropsychiatric symptoms. To confirm 11C-PBB3 binding to tau deposits in TBI brains, we conducted in vitro PBB3 fluorescence and phospho-tau antibody immunofluorescence labelling of brain sections of chronic traumatic encephalopathy obtained from the Brain Bank. Our results showed that patients with TBI had higher 11C-PBB3 binding capacities in the neocortical grey and white matter segments than healthy control subjects. Furthermore, TBI patients with traumatic encephalopathy syndrome showed higher 11C-PBB3 binding capacity in the white matter segment than those without traumatic encephalopathy syndrome, and regional assessments revealed that subgroup difference was also significant in the frontal white matter. 11C-PBB3 binding capacity in the white matter segment correlated with the severity of psychosis. In vitro assays demonstrated PBB3-positive tau inclusions at the depth of neocortical sulci, confirming 11C-PBB3 binding to tau lesions. In conclusion, increased 11C-PBB3 binding capacity is associated with late-onset neuropsychiatric symptoms following TBI, and a close correlation was found between psychosis and 11C-PBB3 binding capacity in the white matter.


Assuntos
Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/patologia , Tauopatias/diagnóstico por imagem , Adulto , Doença de Alzheimer/patologia , Encéfalo/patologia , Encefalopatia Traumática Crônica/patologia , Feminino , Humanos , Masculino , Transtornos Mentais/etiologia , Transtornos Mentais/metabolismo , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons/métodos , Transtornos Psicóticos/etiologia , Transtornos Psicóticos/patologia , Tauopatias/metabolismo , Substância Branca/patologia , Proteínas tau/metabolismo
8.
Mov Disord ; 34(5): 744-754, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30892739

RESUMO

BACKGROUND: [11 C]pyridinyl-butadienyl-benzothiazole 3 is a PET imaging agent designed for capturing pathological tau aggregates in diverse neurodegenerative disorders, and would be of clinical utility for neuropathological investigations of PSP. OBJECTIVES: To explore the usefulness of [11 C]pyridinyl-butadienyl-benzothiazole 3/PET in assessing characteristic distributions of tau pathologies and their association with clinical symptoms in the brains of living PSP patients. METHODS: We assessed 13 PSP patients and 13 age-matched healthy control subjects. Individuals negative for amyloid ß PET with [11 C]Pittsburgh compound B underwent clinical scoring, MR scans, and [11 C]pyridinyl-butadienyl-benzothiazole 3/PET. RESULTS: There were significant differences in binding potential for [11 C]pyridinyl-butadienyl-benzothiazole 3 between PSP patients and healthy control subjects (P = 0.02). PSP patients exhibited greater radioligand retention than healthy control subjects in multiple brain regions, including frontoparietal white matter, parietal gray matter, globus pallidus, STN, red nucleus, and cerebellar dentate nucleus. [11 C]pyridinyl-butadienyl-benzothiazole 3 deposition in frontoparietal white matter, but not gray matter, was correlated with general severity of parkinsonian and PSP symptoms, whereas both gray matter and white matter [11 C]pyridinyl-butadienyl-benzothiazole 3 accumulations in the frontoparietal cortices were associated with nonverbal cognitive impairments. Autoradiographic and fluorescence labeling with pyridinyl-butadienyl-benzothiazole 3 was observed in gray matter and white matter of PSP motor cortex tissues. CONCLUSIONS: Our findings support the in vivo detectability of tau fibrils characteristic of PSP by [11 C]pyridinyl-butadienyl-benzothiazole 3/PET, and imply distinct and synergistic contributions of gray matter and white matte tau pathologies to clinical symptoms. [11 C]pyridinyl-butadienyl-benzothiazole 3/PET potentially provides a neuroimaging-based index for the evolution of PSP tau pathologies promoting the deterioration of motor and cognitive functions. © 2019 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Encéfalo/diagnóstico por imagem , Paralisia Supranuclear Progressiva/diagnóstico por imagem , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Compostos de Anilina , Autorradiografia , Benzotiazóis , Encéfalo/metabolismo , Radioisótopos de Carbono , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Tiazóis
9.
Int J Neuropsychopharmacol ; 20(12): 957-962, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29016875

RESUMO

Background: The norepinephrine transporter in the brain has been targeted in the treatment of psychiatric disorders. Duloxetine is a serotonin and norepinephrine reuptake inhibitor that has been widely used for the treatment of depression. However, the relationship between dose and plasma concentration of duloxetine and norepinephrine transporter occupancy in the human brain has not been determined. In this study, we examined norepinephrine transporter occupancy by different doses of duloxetine. Methods: We calculated norepinephrine transporter occupancies from 2 positron emission tomography scans using (S,S)-[18F]FMeNER-D2 before and after a single oral dose of duloxetine (20 mg, n = 3; 40 mg, n = 3; 60 mg, n =2). Positron emission tomography scans were performed from 120 to 180 minutes after an i.v. bolus injection of (S,S)-[18F]FMeNER-D2. Venous blood samples were taken to measure the plasma concentration of duloxetine just before and after the second positron emission tomography scan. Results: Norepinephrine transporter occupancy by duloxetine was 29.7% at 20 mg, 30.5% at 40 mg, and 40.0% at 60 mg. The estimated dose of duloxetine inducing 50% norepinephrine transporter occupancy was 76.8 mg, and the estimated plasma drug concentration inducing 50% norepinephrine transporter occupancy was 58.0 ng/mL. Conclusions: Norepinephrine transporter occupancy by clinical doses of duloxetine was approximately 30% to 40% in human brain as estimated using positron emission tomography with (S,S)-[18F]FMeNER-D2.


Assuntos
Antidepressivos/farmacologia , Encéfalo/efeitos dos fármacos , Encéfalo/diagnóstico por imagem , Cloridrato de Duloxetina/farmacologia , Morfolinas/farmacocinética , Tomografia por Emissão de Pósitrons , Adulto , Relação Dose-Resposta a Droga , Cloridrato de Duloxetina/sangue , Radioisótopos de Flúor , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Proteínas da Membrana Plasmática de Transporte de Norepinefrina/metabolismo , Ligação Proteica/efeitos dos fármacos , Adulto Jovem
10.
Int J Neuropsychopharmacol ; 20(12): 963-970, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29020405

RESUMO

Background: Neuroticism is a major risk factor for affective disorders. This personality trait has been hypothesized to associate with synaptic availability of the serotonin transporter, which critically controls serotonergic tone in the brain. However, earlier studies linking neuroticism and serotonin transporter have failed to produce converging findings. Because sex affects both the serotonergic system and the risk that neuroticism poses to the individual, sex may modify the association between neuroticism and serotonin transporter, but this question has not been investigated by previous studies. Methods: Here, we combined data from 4 different positron emission tomography imaging centers to address whether neuroticism is related to serotonin transporter binding in vivo. The data set included serotonin transporter binding potential values from the thalamus and striatum and personality scores from 91 healthy males and 56 healthy females. We specifically tested if the association between neuroticism and serotonin transporter is different in females and males. Results: We found that neuroticism and thalamic serotonin transporter binding potentials were associated in both males and females, but with opposite directionality. Higher neuroticism associated with higher serotonin transporter binding potential in males (standardized beta 0.292, P=.008), whereas in females, higher neuroticism associated with lower serotonin transporter binding potential (standardized beta -0.288, P=.014). Conclusions: The finding is in agreement with recent studies showing that the serotonergic system is involved in affective disorders differently in males and females and suggests that contribution of thalamic serotonin transporter to the risk of affective disorders depends on sex.


Assuntos
Córtex Cerebral/metabolismo , Neuroticismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Caracteres Sexuais , Adolescente , Adulto , Córtex Cerebral/diagnóstico por imagem , Feminino , Humanos , Cooperação Internacional , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Ligação Proteica/fisiologia , Análise de Regressão , Adulto Jovem
12.
Eur J Nucl Med Mol Imaging ; 43(9): 1653-63, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26902370

RESUMO

PURPOSE: The histamine H3 receptors are presynaptic neuroreceptors that inhibit the release of histamine and other neurotransmitters. The receptors are considered a drug target for sleep disorders and neuropsychiatric disorders with cognitive decline. We developed a novel PET ligand for the H3 receptors, [(11)C]TASP0410457 ([(11)C]TASP457), with high affinity, selectivity and favorable kinetic properties in the monkey, and evaluated its kinetics and radiation safety profile for quantifying the H3 receptors in human brain. METHODS: Ten healthy men were scanned for 120 min with a PET scanner for brain quantification and three healthy men were scanned for radiation dosimetry after injection of 386 ± 6.2 MBq and 190 ± 7.5 MBq of [(11)C]TASP457, respectively. For brain quantification, arterial blood sampling and metabolite analysis were performed using high-performance liquid chromatography. Distribution volumes (V T) in brain regions were determined by compartment and graphical analyses using the Logan plot and Ichise multilinear analysis (MA1). For dosimetry, radiation absorbed doses were estimated using the Medical Internal Radiation Dose scheme. RESULTS: [(11)C]TASP457 PET showed high uptake (standardized uptake values in the range of about 3 - 6) in the brain and fast washout in cortical regions and slow washout in the pallidum. The two-tissue compartment model and graphical analyses estimated V T with excellent identification using 60-min scan data (about 16 mL/cm(3) in the pallidum, 9 - 14 in the basal ganglia, 6 - 9 in cortical regions, and 5 in the pons), which represents the known distribution of histamine H3 receptors. For parametric imaging, MA1 is recommended because of minimal underestimation with small intersubject variability. The organs with the highest radiation doses were the pancreas, kidneys, and liver. The effective dose delivered by [(11)C]TASP457 was 6.9 µSv/MBq. CONCLUSION: [(11)C]TASP457 is a useful novel PET ligand for the investigation of the density of histamine H3 receptors in human brain.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Radioisótopos de Carbono/metabolismo , Tomografia por Emissão de Pósitrons/métodos , Receptores Histamínicos H3/metabolismo , Adulto , Transporte Biológico , Radioisótopos de Carbono/sangue , Radioisótopos de Carbono/farmacocinética , Voluntários Saudáveis , Humanos , Cinética , Ligantes , Masculino , Radiometria
13.
Epilepsia ; 57(9): e191-4, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27381590

RESUMO

In animal models, inflammation is both a cause and consequence of seizures. Less is known about the role of inflammation in human epilepsy. We performed positron emission tomography (PET) using a radiotracer sensitive to brain inflammation in a patient with frontal epilepsy ~36 h after a seizure as well as during a seizure-free period. When statistically compared to a group of 12 matched controls, both of the patient's scans identified a frontal (supplementary motor area) region of increased inflammation corresponding to his clinically defined seizure focus, but the postseizure scan showed significantly greater inflammation intensity and spatial extent. These results provide new information about transient and chronic neuroinflammation in human epilepsy and may be relevant to understanding the process of epileptogenesis and guiding therapy.


Assuntos
Encefalite/etiologia , Epilepsias Parciais/complicações , Adulto , Encéfalo/diagnóstico por imagem , Estudos de Casos e Controles , Encefalite/diagnóstico por imagem , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Tomografia por Emissão de Pósitrons , Fatores de Tempo
14.
Q J Nucl Med Mol Imaging ; 60(1): 54-61, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24727854

RESUMO

BACKGROUND: The purpose of this study was to determine the utility of 18F-FDG-PET for evaluating the presence and the extent of malignant peritoneal mesothelioma (MPM), for disease surveillance/recurrence detection and for evaluating response to therapy. METHODS: We retrospectively analyzed clinical and imaging data of 60 MPM patients (34 women and 26 men, mean age 53.6 y, range 18-80 y) who had multiple 18F-FDG-PET/CT or PET scans (18F-FDG scans) at various stages of the disease. RESULTS: Eleven patients had baseline pretreatment scans and all 11 scans showed 18F-FDG avid diffuse, nodular or mixed disease distribution patterns characteristic of MPM. Four patients out of eleven had an early post-treatment 18F-FDG scan (<6 months) and all scans were accurate in determining response to treatment. Forty-nine patients with a history of treated MPM without baseline scans had multiple disease surveillance 18F-FDG scans. Their initial 18F-FDG scans had an accuracy of 82% and positive predictive value of 83% and negative predictive value of 80% for the detection of disease presence and disease-free state, respectively. For fifteen patients with a true negative 18F-FDG scan, a second follow-up scan accurately detected disease recurrence or absence of recurrence in all cases. Metastatic or remote nodal disease was more common in the biphasic histopathologic subtype group while pleural disease was predominantly seen in the epithelial MPM group. No relationship was found between the uptake pattern and the histopathologic subtype. CONCLUSION: 18F-FDG-PET is a valuable imaging modality in the pre-surgical evaluation and management of MPM and further prospective studies are warranted.


Assuntos
Fluordesoxiglucose F18 , Neoplasias Pulmonares/diagnóstico por imagem , Mesotelioma/diagnóstico por imagem , Neoplasias Peritoneais/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Masculino , Mesotelioma/patologia , Mesotelioma/terapia , Mesotelioma Maligno , Pessoa de Meia-Idade , Neoplasias Peritoneais/patologia , Neoplasias Peritoneais/terapia , Recidiva , Estudos Retrospectivos , Sensibilidade e Especificidade , Resultado do Tratamento , Adulto Jovem
15.
EJNMMI Radiopharm Chem ; 9(1): 19, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38436869

RESUMO

BACKGROUND: Heat shock proteins (HSPs) are present throughout the brain. They function as molecular chaperones, meaning they help with the folding and unfolding of large protein complexes. These chaperones are vital in the development of neuropathological conditions such as Alzheimer's disease and Lewy body disease, with HSP90, a specific subtype of HSP, playing a key role. Many studies have shown that drugs that inhibit HSP90 activity have beneficial effects in the neurodegenerative diseases. Therefore, HSP90 PET imaging ligand can be used effectively to study HSP90 in neurodegenerative diseases. Among four HSP90 isoforms, two cytosolic isoforms (HSP90α and HSP90ß) thought to be involved in the structural homeostasis of the proteins related to the neurodegenerative diseases. Currently, no useful PET imaging ligands selectively targeting the two cytosolic isoforms of HSP90 have been available yet. RESULTS: In this study, we developed a novel positron emission tomography (PET) imaging ligand, [11C]BIIB021, by 11C-radiolabeling (a positron emitter with a half-life of 20.4 min) 6-Chloro-9-[(4-methoxy-3,5-dimethylpyridin-2-yl)methyl]-9H-purin-2-amine (BIIB021), an inhibitor with a high affinity for and selectivity to HSP90α and HSP90ß. [11C]BIIB021 was synthesized with a high yield, molar activity and radiochemical purity. [11C]BIIB021 showed a high binding affinity for rat brain homogenate as well as human recombinant HSP90α and HSP90ß proteins. Radioactivity was well detected in the rat brain (SUV 1.4). It showed clear specific binding in PET imaging of healthy rats and autoradiography of healthy rat and human brain sections. Radiometabolite was detected in the brain, however, total distribution volume was well quantified using dual-input graphical model. Inhibition of p-glycoprotein increased brain radioactivity concentrations. However, total distribution volume values with and without p-glycoprotein inhibition were nearly the same. CONCLUSIONS: We have developed a new PET imaging agent, [11C]BIIB021, specifically targeting HSP90α/ß. We have been successful in synthesizing [11C]BIIB021 and in vitro and in vivo imaging HSP90α/ß. However, the quantification of HSP90α/ß is complicated by the presence of radiometabolites in the brain and the potential to be a substrate for p-glycoprotein. Further efforts are needed to develop radioligand suitable for imaging of HSP90α/ß.

16.
Neuron ; 112(15): 2540-2557.e8, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38843838

RESUMO

Deposition of α-synuclein fibrils is implicated in Parkinson's disease (PD) and dementia with Lewy bodies (DLB), while in vivo detection of α-synuclein pathologies in these illnesses has been challenging. Here, we have developed a small-molecule ligand, C05-05, for visualizing α-synuclein deposits in the brains of living subjects. In vivo optical and positron emission tomography (PET) imaging of mouse and marmoset models demonstrated that C05-05 captured a dynamic propagation of fibrillogenesis along neural pathways, followed by disruptions of these structures. High-affinity binding of 18F-C05-05 to α-synuclein aggregates in human brain tissues was also proven by in vitro assays. Notably, PET-detectable 18F-C05-05 signals were intensified in the midbrains of PD and DLB patients as compared with healthy controls, providing the first demonstration of visualizing α-synuclein pathologies in these illnesses. Collectively, we propose a new imaging technology offering neuropathology-based translational assessments of PD and allied disorders toward diagnostic and therapeutic research and development.


Assuntos
Modelos Animais de Doenças , Doença por Corpos de Lewy , Doença de Parkinson , Tomografia por Emissão de Pósitrons , alfa-Sinucleína , Animais , alfa-Sinucleína/metabolismo , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doença de Parkinson/diagnóstico por imagem , Humanos , Camundongos , Tomografia por Emissão de Pósitrons/métodos , Doença por Corpos de Lewy/metabolismo , Doença por Corpos de Lewy/patologia , Doença por Corpos de Lewy/diagnóstico por imagem , Callithrix , Masculino , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Feminino , Idoso , Camundongos Endogâmicos C57BL
17.
Int J Neuropsychopharmacol ; 16(4): 733-43, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22953744

RESUMO

The central serotonergic system has been implicated in the pathophysiology of panic disorder (PD) by evidence of abnormally elevated serotonin-turnover, reduced pre- and post-synaptic 5-HT(1A)-receptor sensitivity and binding and clinical improvement during administration of agents that enhance serotonergic transmission. Polymorphisms in genes that putatively influence serotonergic neurotransmission increase the vulnerability for developing PD specifically in males. We tested the hypotheses that serotonin transporter (5-HTT) binding is elevated in PD subjects vs. healthy controls in regions where in vivo evidence exists for both elevated 5-HTT and 5-HT(1A) receptor levels in PD and investigated whether the extent of this difference depends upon gender. Volunteers were out-patients with current PD (n=24) and healthy controls (n=24). The non-displaceable component of 5-HTT binding-potential (BP(ND)) was measured using positron emission tomography and the 5-HTT selective radioligand, [(11)C]DASB. PD severity was assessed using the PD Severity Scale. The 5-HTT-BP(ND) was increased in males with PD relative to male controls in the anterior cingulate cortex (F=8.96, p(FDR)=0.01) and midbrain (F=5.09, p(FDR)=0.03). In contrast, BP(ND) did not differ between females with PD and female controls in any region examined. The finding that 5-HTT-binding is elevated in males but not in females with PD converges with other evidence suggesting that dysfunction within the central serotonergic system exists in PD, and also indicates that such abnormalities are influenced by gender. These findings conceivably may reflect a sexual dimorphism that underlies the greater efficacy of serotonin reuptake inhibitor treatment in females vs. males with PD.


Assuntos
Encéfalo/metabolismo , Transtorno de Pânico/metabolismo , Transtorno de Pânico/psicologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Caracteres Sexuais , Adolescente , Adulto , Encéfalo/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transtorno de Pânico/diagnóstico , Ligação Proteica/fisiologia , Adulto Jovem
18.
EJNMMI Res ; 13(1): 82, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37713137

RESUMO

BACKGROUND: The neuropathological changes of early Alzheimer's disease (AD) include neurodegenerative loss of noradrenaline neurons in the locus coeruleus with decreasing noradrenaline availability in their projection areas such as the hippocampus. This diminishing noradrenaline availability is thought to play an important role pathophysiologically in the development of cognitive impairment in AD, because noradrenaline is not only essential for maintaining cognitive functions such as memory, learning and attention, but also its anti-inflammatory action, where its lack is known to accelerate the progression of AD in the mouse model. Therefore, the availability of in vivo biomarkers of the integrity of noradrenaline neurons may be beneficial for furthering our understanding of the role played by the noradrenaline system in the progressive cognitive dysfunction seen in AD patients. In this study, we investigated if PET imaging of noradrenaline transporters can predict the level of noradrenaline in the brain. Our hypothesis was PET measured noradrenaline transporter densities could predict the level of noradrenaline concentrations in the rat hippocampus after lesioning of noradrenaline neurons in this region. RESULTS: We chemically lesioned the hippocampus of rats (n = 15) by administering a neurotoxin, DSP-4, in order to selectively damage axonal terminals of noradrenergic neurons. These rats then underwent PET imaging of noradrenaline transporters using [11C]MRB ((S,S)-[11C]Methylreboxetine). To validate our hypothesis, postmortem studies of brain homogenates of these rats were performed to measure both noradrenaline transporter and noradrenaline concentrations. [11C]MRB PET showed decreased noradrenaline transporter densities in a DSP-4 dose-dependent manner in the hippocampus of these rats. In turn, these PET measured noradrenaline transporter densities correlated very well with in vitro measured noradrenaline concentrations as well as in vitro transporter densities. CONCLUSIONS: [11C]MRB PET may be used as an in vivo biomarker of noradrenaline concentrations in the hippocampus of the neurodegenerating brain. Further studies appear warranted to extend its applicability to AD studies.

19.
J Nucl Med ; 64(3): 444-451, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36175137

RESUMO

In vivo characterization of pathologic deposition of tau protein in the human brain by PET imaging is a promising tool in drug development trials of Alzheimer disease (AD). 6-(fluoro-18F)-3-(1H-pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine (18F-MK-6240) is a radiotracer with high selectivity and subnanomolar affinity for neurofibrillary tangles that shows favorable nonspecific brain penetration and excellent kinetic properties. The purpose of the present investigation was to develop a visual assessment method that provides both an overall assessment of brain tauopathy and regional characterization of abnormal tau deposition. Methods: 18F-MK-6240 scans from 102 participants (including cognitively normal volunteers and patients with AD or other neurodegenerative disorders) were reviewed by an expert nuclear medicine physician masked to each participant's diagnosis to identify common patterns of brain uptake. This initial visual read method was field-tested in a separate, nonoverlapping cohort of 102 participants, with 2 additional naïve readers trained on the method. Visual read outcomes were compared with semiquantitative assessments using volume-of-interest SUV ratio. Results: For the visual read, the readers assessed 8 gray-matter regions per hemisphere as negative (no abnormal uptake) or positive (1%-25% of the region involved, 25%-75% involvement, or >75% involvement) and then characterized the tau binding pattern as positive or negative for evidence of tau and, if positive, whether brain uptake was in an AD pattern. The readers demonstrated agreement 94% of the time for overall positivity or negativity. Concordance on the determination of regional binary outcomes (negative or positive) showed agreement of 74.3% and a Fleiss κ of 0.912. Using clinical diagnosis as the ground truth, the readers demonstrated a sensitivity of 73%-79% and specificity of 91%-93%, with a combined reader-concordance sensitivity of 80% and specificity of 93%. The average SUV ratio in cortical regions showed a robust correlation with visually derived ratings of regional involvement (r = 0.73, P < 0.0001). Conclusion: We developed a visual read algorithm for 18F-MK-6240 PET offering determination of both scan positivity and the regional degree of cortical involvement. These cross-sectional results show strong interreader concordance on both binary and regional assessments of tau deposition, as well as good sensitivity and excellent specificity supporting use as a tool for clinical trials.


Assuntos
Doença de Alzheimer , Encéfalo , Humanos , Estudos Transversais , Encéfalo/metabolismo , Doença de Alzheimer/metabolismo , Proteínas tau/metabolismo , Tomografia por Emissão de Pósitrons/métodos
20.
EJNMMI Radiopharm Chem ; 8(1): 31, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853253

RESUMO

BACKGROUND: Receptor interacting protein kinase 1 (RIPK1) is a serine/threonine kinase, which regulates programmed cell death and inflammation. Recently, the involvement of RIPK1 in the pathophysiology of Alzheimer's disease (AD) has been reported; RIPK1 is involved in microglia's phenotypic transition to their dysfunctional states, and it is highly expressed in the neurons and microglia in the postmortem brains in AD patients. They prompt neurodegeneration leading to accumulations of pathological proteins in AD. Therefore, regulation of RIPK1 could be a potential therapeutic target for the treatment of AD, and in vivo imaging of RIPK1 may become a useful modality in studies of drug discovery and pathophysiology of AD. The purpose of this study was to develop a suitable radioligand for positron emission tomography (PET) imaging of RIPK1. RESULTS: (S)-2,2-dimethyl-1-(5-phenyl-4,5-dihydro-1H-pyrazol-1-yl)propan-1-one (GSK'963) has a high affinity, selectivity for RIPK1, and favorable physiochemical properties based on its chemical structure. In this study, since 11C-labeling (half-life: 20.4 min) GSK'963 retaining its structure requiring the Grignard reaction of tert-butylmagnesium halides and [11C]carbon dioxide was anticipated to give a low yield, we decided instead to 11C-label a GSK'963 analog ((S)-2,2-dimethyl-1-(5-(m-tolyl)-4,5-dihydro-1H-pyrazol-1-yl)propan-1-one, GG502), which has a high RIPK1 inhibitory activity equivalent to that of the original compound GSK'963. Thus, we successfully 11C-labeled GG502 using a Pd-mediated cross-coupling reaction in favorable yields (3.6 ± 1.9%) and radiochemical purities (> 96%), and molar activity (47-115 GBq/µmol). On autoradiography, radioactivity accumulation was observed for [11C]GG502 and decreased by non-radioactive GG502 in the mouse spleen and human brain, indicating the possibility of specific binding of this ligand to RIPK1. On brain PET imaging in a rhesus monkey, [11C]GG502 showed a good brain permeability (peak standardized uptake value (SUV) ~3.0), although there was no clear evidence of specific binding of [11C]GG502. On brain PET imaging in acute inflammation model rats, [11C]GG502 also showed a good brain permeability, and no significant increased uptake was observed in the lipopolysaccharide-treated side of striatum. On metabolite analysis in rats at 30 min after administration of [11C]GG502, ~55% and ~10% of radioactivity was from unmetabolized [11C]GG502 in the brain and the plasma, respectively. CONCLUSIONS: We synthesized and evaluated a 11C-labeled PET ligand based on the methylated analog of GSK'963 for imaging of RIPK1 in the brain. Although in autoradiography of the resulting [11C]GG502 indicated the possibility of specific binding, the actual PET imaging failed to detect any evidence of specific binding to RIPK1 despite its good brain permeability. Further development of radioligands with a higher binding affinity for RIPK1 in vivo and more stable metabolite profiles compared with the current compound may be required.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA