Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Sci ; 36(6): 717-721, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31902827

RESUMO

A multiple channel-type concentric grid nebulizer (m-CGrid) was developed for realizing efficient online standard addition in inductively coupled plasma optical emission spectrometry (ICP-OES) without premixing of liquids before nebulization. The m-CGrid can nebulize two independent liquids without premixing due to a unique structure, having two independent liquid-flow capillaries inside a single nozzle and a grid screen (over 350 mesh per inch) placed on the hole of the nozzle. The grid acts as both a flow damper and sieve; two liquids are well-mixed with a gas flow in a small space just before the grid screen, and the mixture breaks up into small droplets by passing through the grid. The m-CGrid nebulizer provides almost the same or better spray performance compared with a conventional nebulizer, such as Meinhard nebulizer; the primary aerosols were much finer (D50: 2.9 and 3.1 µm for two channels) than those generated with Meinhard nebulizer type C (D50: 19.5 µm). The signal intensities in ICP-OES obtained with two liquid channels were almost the same and were 2- to 3-fold higher than that obtained with the Meinhard nebulizer for 23 elements. The performance of m-CGrid in an online standard addition was demonstrated in the analysis of NIST SRM1577b bovine liver and NIES No. 3 Chrorella. The analytical results were in good agreement with their certified values.

2.
Anal Sci ; 34(6): 693-699, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29887558

RESUMO

A method was established for the quantitative analysis of the elements (Cu, Ag, Pb, and Sn) in solder samples by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), with Sn-based matrix matched standard solutions for defining the calibration curves. It was found that chloride-ion presented in commercially available Sn standard solution resulted in a precipitation of AgCl and caused the deterioration of the linearity of the calibration curve for Ag. Therefore, a laboratory-made chloride-free Sn solution was used to prepare Sn matrix matched standard solutions so as to ensure the stability of the elements including Ag. For the quantitative analysis of solder samples by LA-ICP-MS, the operating conditions of the LA instruments were set to obtain a fluence of over 12 J cm-2. This is mainly because of larger LA-induced elemental fractionations using a fluence of <10 J cm-2. The results for Ag, Cu, Pb, and Sn in a certified reference material (NMIJ CRM 8203-a) were close to, or in agreement with, the certified values, indicating that the present method was valid for the quantitative analysis of the elements in solder samples. In comparison to the certified values, relatively larger uncertainties were obtained for the analytical results by LA-ICP-MS, which could be attributed to the dependence on the homogeneity of the sample because the sample aliquots used for analysis were much smaller than those required for the traditional analytical procedures (i.e., sample quantity ratio of ca. 1:13000). Further improvement of the uncertainty might be obtained by using a larger sample quantity for the analysis by LA-ICP-MS so as to improve the representativeness of the sample.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA