Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Anal Chem ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028890

RESUMO

MicroRNAs (miRNAs), which are short single-stranded RNA sequences between 18 and 24 nucleotides, are known to play a crucial role in gene expression. Changes in their expression are not only involved in many diseases but also as a response to physiological changes, such as physical exercise. In this work, a new analytical strategy for the sensitive and specific analysis of miRNA sequences in human plasma is presented. The developed strategy does not depend on any nucleic acid amplification process and can be obtained in direct correlation to the number of events obtained by using single-particle ICP-MS measurements. The high selectivity of the assay (up to single nucleotide polymorphisms) can be achieved by a double hybridization process of the target miRNA with a complementary capture oligonucleotide that is conjugated to a magnetic microparticle and simultaneously with a complementary reporter oligonucleotide conjugated to a gold nanoparticle. Thanks to the novel approach followed in this method, the stoichiometry of the oligonucleotide-nanoparticle conjugates does not need to be addressed for the quantification of the target miRNA, which also represents a big advantage over other similar methods. The optimized method is applied to the determination of a miRNA as a biomarker of physical exercise in non-spiked human serum samples, and the results are validated against rt-qPCR. The achieved sensitivity permits the direct differentiation among sedentary and sportive subjects. This general platform can be easily applied to any other sequence by only modifying the capture and reporter oligonucleotides, paving the way for multiple clinically interesting applications.

2.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36674679

RESUMO

Gestational diabetes mellitus (GDM) is defined as any degree of glucose intolerance that is diagnosed for the first time during pregnancy. The objective of this study is to know the glucose tolerance status after 15 years of pregnancy in patients diagnosed with gestational diabetes and to assess the long-term effect of GDM on the circulating miRNA profile of these women. To answer these, 30 randomly selected women diagnosed with GDM during 2005-2006 were included in the study, and glucose tolerance was measured using the National Diabetes Data Group criteria. Additionally, four miRNAs (hsa-miR-1-3p, hsa-miR-24-3p, hsa-miR-329-3p, hsa-miR-543) were selected for their analysis in the plasma of women 15 years after the diagnosis of GDM. In our study we discovered that, fifteen years after the diagnosis of GDM, 50% of women have some degree of glucose intolerance directly related to body weight and body mass index during pregnancy. Dysglycemic women also showed a significantly increased level of circulating hsa-miR-24-3p. Thus, we can conclude that initial weight and BMI, together with circulating expression levels of hsa-miR-24-3p, could be good predictors of the future development of dysglycemia in women with a previous diagnosis of GDM.


Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Intolerância à Glucose , MicroRNAs , Gravidez , Humanos , Feminino , Diabetes Gestacional/diagnóstico , Diabetes Gestacional/genética , Índice de Massa Corporal , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/genética , Intolerância à Glucose/diagnóstico , Intolerância à Glucose/genética , MicroRNAs/genética , Fatores de Risco , Glucose
3.
Semin Cancer Biol ; 73: 19-29, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33086083

RESUMO

Cancer is one of the leading causes of premature death and constitutes a challenge for both low- and high-income societies. Previous evidence supports a close association between modifiable risk factors, including dietary habits, and cancer risk. Investigation of molecular mechanisms that mediate the pro-oncogenic and anti-oncogenic effects of diet is therefore fundamental. MicroRNAs (miRNAs) have received much attention in the past few decades as crucial molecular elements of human physiology and disease. Aberrant expression patterns of these small noncoding transcripts have been observed in a wide array of cancers. Interestingly, human miRNAs not only can be modulated by bioactive dietary components, but it has also been proposed that diet-derived miRNAs may contribute to the pool of human miRNAs. Results from independent groups have suggested that these exogenous miRNAs may be functional in organisms. These findings open the door to novel and innovative approaches to cancer therapy. Here, we provide an overview of the biology of miRNAs, with a special focus on plant-derived dietary miRNAs, summarize recent findings in the field of cancer, address the possible applications to clinical practice and discuss obstacles and challenges in the field.


Assuntos
Dieta , MicroRNAs , Neoplasias , Plantas , Animais , Humanos
4.
J Strength Cond Res ; 35(2): 287-291, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33337695

RESUMO

ABSTRACT: Fernández-Sanjurjo, M, Díaz-Martínez, ÁE, Díez-Robles, S, González-González, F, de Gonzalo-Calvo, D, Rabadán, M, Dávalos, A, Fernández-García, B, and Iglesias-Gutiérrez, E. Circulating microRNA profiling reveals specific subsignatures in response to a maximal incremental exercise test. J Strength Cond Res 35(2): 287-291, 2021-Circulating microRNAs (c-miRNAs) have been described as emergent regulators and biomarkers of exercise. The aim of this study was to analyze the c-miRNA response to a maximal incremental exercise test (MIET) and its relationship with markers of exercise response and adaptation. Two blood samples were collected from 9 male amateur runners (31-50 years), before (Pre) and after (Post) a MIET. The maximal oxygen uptake (V̇o2max), maximum heart rate (HRmax), and maximal aerobic speed (MAS) were recorded. Lactate and creatine kinase (CK) plasma concentrations were measured. A panel of 752 miRNAs was analyzed using standardized protocols and relative quantification to Pre. A total of 13 miRNAs were found significantly upregulated at Post. By focusing on the exercise markers that correlate with the expression of these miRNAs, they were clustered into different functional groups or subsignatures. Thus, miR-21-5p, miR-29b-3p, and miR-183-5p showed a strong correlation with HRmax and a validated target signature related to fatty acid metabolism. Furthermore, let-7c-5p, miR-340-5p, miR-425-3p, and miR-629-5p were significantly correlated with CK, and the most significantly enriched pathways for these subsignatures were the Hippo signaling pathway and signaling pathways regulating pluripotency of stem cells. Finally, Pre miR-106b-5p expression showed an inverse association with MAS and Post lactate concentration, which highlights its relevance as biomarker of training status and its predictive value for performance. No significant correlations were observed with V̇o2max. Our results define for the first time specific functional c-miRNA subsignatures, adding novel evidence about their potential regulatory role in exercise response.


Assuntos
MicroRNA Circulante , MicroRNAs , Biomarcadores , Exercício Físico , Teste de Esforço , Masculino , MicroRNAs/genética
5.
Scand J Med Sci Sports ; 30(2): 238-253, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31650583

RESUMO

Endurance training promotes exercise-induced adaptations in brain, like hippocampal adult neurogenesis and autophagy induction. However, resistance training effect on the autophagy response in the brain has not been much explored. Questions such as whether partial systemic autophagy or the length of training intervention affect this response deserve further attention. Therefore, 8-week-old male wild-type (Wt; n = 36) and systemic autophagy-deficient (atg4b-/- , KO; n = 36) mice were randomly distributed in three training groups, resistance (R), endurance (E), and control (non-trained), and in two training periods, 2 or 14 weeks. R and E maximal tests were evaluated before and after the training period. Forty-eight hours after the end of training program, cerebral cortex, striatum, hippocampus, and cerebellum were extracted for the analysis of autophagy proteins (LC3B-I, LC3B-II, and p62). Additionally, hippocampal adult neurogenesis was determined by doublecortin-positive cells count (DCX+) in brain sections. Our results show that, in contrast to Wt, KO were unable to improve R after both trainings. Autophagy levels in brain areas may be modified by E training only in cerebral cortex of Wt trained for 14 weeks, and in KO trained for 2 weeks. DCX + in Wt increased in R and E after both periods of training, with R for 14 weeks more effective than E. Interestingly, no changes in DCX + were observed in KO after 2 weeks, being even undetectable after 14 weeks of intervention. Thus, autophagy is crucial for R performance and for exercise-induced adult neurogenesis.


Assuntos
Autofagia , Córtex Cerebral/fisiologia , Neurogênese , Condicionamento Físico Animal , Adaptação Fisiológica , Animais , Proteína Duplacortina , Hipocampo/fisiologia , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Condicionamento Físico Animal/métodos , Proteína Sequestossoma-1/metabolismo
6.
Scand J Med Sci Sports ; 30(10): 1896-1907, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32609897

RESUMO

The systemic response to exercise is dose-dependent and involves a complex gene expression regulation and cross-talk between tissues. This context ARISES the need for analyzing the influence of exercise dose on the profile of circulating microRNAs (c-miRNAs), as emerging posttranscriptional regulators and intercellular communicators. Thus, we hypothesized that different exercise doses will determine specific c-miRNA signatures that will highlight its potential as exercise dose biomarker. Nine active middle-aged males completed a 10-km race (10K), a half-marathon (HM), and a marathon (M). Blood samples were collected immediately before and after races. Plasma RNA was extracted, and a global screening of 752 microRNAs was analyzed using RT-qPCR. Three different c-miRNA profiles were defined according to the three doses. In 10K, 14 c-miRNAs were found to be differentially expressed between pre- and post-exercise, 13 upregulated and 1 downregulated. Regarding HM, 13 c-miRNAs were found to be differentially modulated, in all the cases upregulated. A total of 28 c-miRNAs were found to be differentially expressed in M, 21 overexpressed and 7 repressed after this race. We had also found 3 common c-miRNAs between 10K and M and 2 common c-miRNAs between 10K and HM. In silico analysis supported a close association between exercise dose c-miRNA profiles and cellular pathways linked to energy metabolism and cell cycle. In conclusion, we have observed that different exercise doses induced specific c-miRNA profiles. So, our results point to c-miRNAs as emerging exercise dose biomarkers and as one of regulatory mechanisms modulating the response to endurance exercise.


Assuntos
Comunicação Celular/fisiologia , MicroRNA Circulante/sangue , Resistência Física/fisiologia , Corrida/fisiologia , Biomarcadores/sangue , Registros de Dieta , Regulação para Baixo , Humanos , Masculino , Corrida de Maratona/fisiologia , Processamento Pós-Transcricional do RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima
7.
Pharmacol Res ; 132: 21-32, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29627443

RESUMO

The possibility that diet-derived miRNAs survive the gastrointestinal tract and exert biological effects in target cells is triggering considerable research in the potential abilities of alimentary preventive and therapeutic approaches. Many validation attempts have been carried out and investigators disagree on several issues. The barriers exogenous RNAs must surpass are harsh and adequate copies must reach target cells for biological actions to be carried out. This prospect opened a window for previously unlikely scenarios concerning exogenous non-coding RNAs, such as a potential role for breast milk microRNAs in infants' development and maturation. This review is focused on the thorny path breast milk miRNAs face towards confirmation as relevant role players in infants' development and maturation, taking into consideration the research carried out so far on the uptake, gastrointestinal barriers and potential biological effects of diet-derived miRNAs. We also discuss the future pharmacological and pharma-nutritional consequences of appropriate miRNAs research.


Assuntos
MicroRNAs , Leite Humano , Animais , Disponibilidade Biológica , Desenvolvimento Infantil , Humanos , Recém-Nascido , Lipídeos , MicroRNAs/administração & dosagem , MicroRNAs/imunologia , MicroRNAs/farmacocinética
8.
Exerc Sport Sci Rev ; 46(3): 160-171, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29659417

RESUMO

An interest has recently emerged in the role of circulating microRNAs (c-miRNAs) as posttranscriptional regulators, intercellular communicators and, especially, as potential biomarkers of the systemic response to acute exercise and training. We propose that, with the limited, heterogeneous, and mainly descriptive information currently available, c-miRNAs do not provide a reliable biomarker of exercise in healthy or diseased individuals.


Assuntos
Biomarcadores/sangue , Exercício Físico/fisiologia , MicroRNAs/sangue , Doença , Saúde , Humanos
9.
Pharmacol Res ; 100: 322-34, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26325301

RESUMO

Maternal nutrition during pregnancy and lactation influences the offspring's health in the long-term. Indeed, human epidemiological studies and animal model experiments suggest that either an excess or a deficit in maternal nutrition influence offspring development and susceptibility to metabolic disorders. Different epigenetic mechanisms may explain in part the way by which dietary factors in early critical developmental steps might be able to affect the susceptibility to develop metabolic diseases in adulthood. microRNAs are versatile regulators of gene expression and play a major role during tissue homeostasis and disease. Dietary factors have also been shown to modify microRNA expression. However, the role of microRNAs in fetal programming remains largely unstudied. This review evaluates in vivo studies conducted to analyze the effect of maternal diet on the modulation of the microRNA expression in the offspring and their influence to develop metabolic and cardiovascular disease in later life. In overall, the available evidence suggests that nutritional status during pregnancy influence offspring susceptibility to the development of cardiometabolic risk factors, partly through microRNA action. Thus, therapeutic modulation of microRNAs can open up new strategies to combat - later in life - the effects of nutritional insult during critical points of development.


Assuntos
Cardiopatias/etiologia , Cardiopatias/genética , Fenômenos Fisiológicos da Nutrição Materna/genética , MicroRNAs/genética , Animais , Feminino , Humanos , Lactação/genética , Relações Mãe-Filho , Mães , Gravidez
10.
J Nutr ; 144(5): 575-85, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24623846

RESUMO

Consumption of the long-chain ω-3 (n-3) polyunsaturated fatty acid docosahexaenoic acid (DHA) is associated with a reduced risk of cardiovascular disease and greater chemoprevention. However, the mechanisms underlying the biologic effects of DHA remain unknown. It is well known that microRNAs (miRNAs) are versatile regulators of gene expression. Therefore, we aimed to determine if the beneficial effects of DHA may be modulated in part through miRNAs. Loss of dicer 1 ribonuclease type III (DICER) in enterocyte Caco-2 cells supplemented with DHA suggested that several lipid metabolism genes are modulated by miRNAs. Analysis of miRNAs predicted to target these genes revealed several miRNA candidates that are differentially modulated by fatty acids. Among the miRNAs modulated by DHA were miR-192 and miR-30c. Overexpression of either miR-192 or miR-30c in enterocyte and hepatocyte cells suggested an effect on the expression of genes related to lipid metabolism, some of which were confirmed by endogenous inhibition of these miRNAs. Our results show in enterocytes that DHA exerts its biologic effect in part by regulating genes involved in lipid metabolism and cancer. Moreover, this response is mediated through miRNA activity. We validate novel targets of miR-30c and miR-192 related to lipid metabolism and cancer including nuclear receptor corepressor 2, isocitrate dehydrogenase 1, DICER, caveolin 1, ATP-binding cassette subfamily G (white) member 4, retinoic acid receptor ß, and others. We also present evidence that in enterocytes DHA modulates the expression of regulatory factor X6 through these miRNAs. Alteration of miRNA levels by dietary components in support of their pharmacologic modulation might be valuable in adjunct therapy for dyslipidemia and other related diseases.


Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Dislipidemias/genética , Enterócitos/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , MicroRNAs/metabolismo , Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Células CACO-2 , Caveolina 1/genética , Caveolina 1/metabolismo , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Dislipidemias/metabolismo , Enterócitos/fisiologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/fisiologia , Células Hep G2 , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Metabolismo dos Lipídeos/genética , RNA Interferente Pequeno/genética , Receptores do Ácido Retinoico/genética , Receptores do Ácido Retinoico/metabolismo , Ribonuclease III/genética , Ribonuclease III/metabolismo
12.
Eur J Sport Sci ; 24(6): 766-776, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38874986

RESUMO

A sedentary lifestyle and Olympic participation are contrary risk factors for global mortality and incidence of cancer and cardiovascular disease. Extracellular vesicle miRNAs have been described to respond to exercise. No molecular characterization of young male sedentary people versus athletes is available; so, our aim was to identify the extracellular vesicle miRNA profile of chronically trained young endurance and resistance male athletes compared to their sedentary counterparts. A descriptive case-control design was used with 16 sedentary young men, 16 Olympic male endurance athletes, and 16 Olympic male resistance athletes. Next-generation sequencing and RT-qPCR and external and internal validation were performed in order to analyze extracellular vesicle miRNA profiles. Endurance and resistance athletes had significant lower levels of miR-16-5p, miR-19a-3p, and miR-451a compared to sedentary people. Taking all together, exercise-trained miRNA profile in extracellular vesicles provides a differential signature of athletes irrespective of the type of exercise compared to sedentary people. Besides, miR-25-3p levels were specifically lower in endurance athletes which defines its role as a specific responder in this type of athletes. In silico analysis of this profile suggests a role in adaptive energy metabolism in this context that needs to be experimentally validated. Therefore, this study provides for the first time basal levels of circulating miRNA in extracellular vesicles emerge as relevant players in intertissue communication in response to chronic exercise exposure in young elite male athletes.


Assuntos
Atletas , Vesículas Extracelulares , Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs , Comportamento Sedentário , Humanos , Masculino , MicroRNAs/sangue , Vesículas Extracelulares/metabolismo , Estudos de Casos e Controles , Adulto Jovem , Resistência Física , Adolescente
13.
Nutrients ; 16(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38474789

RESUMO

BACKGROUND: Regular exercise has been described to modify both the diversity and the relative abundance of certain bacterial taxa. To our knowledge, the effect of a cycling stage race, which entails extreme physiological and metabolic demands, on the gut microbiota composition and its metabolic activity has not been analysed. OBJECTIVE: The aim of this cohort study was to analyse the dynamics of faecal microbiota composition and short-chain fatty acids (SCFAs) content of professional cyclists over a Grand Tour and their relationship with performance and dietary intake. METHODS: 16 professional cyclists competing in La Vuelta 2019 were recruited. Faecal samples were collected at four time points: the day before the first stage (A); after 9 stages (B); after 15 stages (C); and on the last stage (D). Faecal microbiota populations and SCFA content were analysed using 16S rRNA sequencing and gas chromatography, respectively. A principal component analysis (PCA) followed by Generalised Estimating Equation (GEE) models were carried out to explore the dynamics of microbiota and SCFAs and their relationship with performance. RESULTS: Bifidobacteriaceae, Coriobacteriaceae, Erysipelotrichaceae, and Sutterellaceae dynamics showed a strong final performance predictive value (r = 0.83, ranking, and r = 0.81, accumulated time). Positive correlations were observed between Coriobacteriaceae with acetate (r = 0.530) and isovalerate (r = 0.664) and between Bifidobacteriaceae with isobutyrate (r = 0.682). No relationship was observed between SCFAs and performance. The abundance of Erysipelotrichaceae at the beginning of La Vuelta was directly related to the previous intake of complex-carbohydrate-rich foods (r = 0.956), while during the competition, the abundance of Bifidobacteriaceae was negatively affected by the intake of simple carbohydrates from supplements (r = -0.650). CONCLUSIONS: An ecological perspective represents more realistically the relationship between gut microbiota composition and performance compared to single-taxon approaches. The composition and periodisation of diet and supplementation during a Grand Tour, particularly carbohydrates, could be designed to modulate gut microbiota composition to allow better performance.


Assuntos
Microbioma Gastrointestinal , Humanos , RNA Ribossômico 16S/genética , Estudos de Coortes , Ácidos Graxos Voláteis/metabolismo , Fezes/microbiologia , Ingestão de Alimentos , Exercício Físico , Carboidratos/análise
14.
Nat Commun ; 15(1): 5829, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39013876

RESUMO

Aging involves the deterioration of organismal function, leading to the emergence of multiple pathologies. Environmental stimuli, including lifestyle, can influence the trajectory of this process and may be used as tools in the pursuit of healthy aging. To evaluate the role of epigenetic mechanisms in this context, we have generated bulk tissue and single cell multi-omic maps of the male mouse dorsal hippocampus in young and old animals exposed to environmental stimulation in the form of enriched environments. We present a molecular atlas of the aging process, highlighting two distinct axes, related to inflammation and to the dysregulation of mRNA metabolism, at the functional RNA and protein level. Additionally, we report the alteration of heterochromatin domains, including the loss of bivalent chromatin and the uncovering of a heterochromatin-switch phenomenon whereby constitutive heterochromatin loss is partially mitigated through gains in facultative heterochromatin. Notably, we observed the multi-omic reversal of a great number of aging-associated alterations in the context of environmental enrichment, which was particularly linked to glial and oligodendrocyte pathways. In conclusion, our work describes the epigenomic landscape of environmental stimulation in the context of aging and reveals how lifestyle intervention can lead to the multi-layered reversal of aging-associated decline.


Assuntos
Envelhecimento , Epigênese Genética , Heterocromatina , Hipocampo , Animais , Hipocampo/metabolismo , Envelhecimento/genética , Masculino , Camundongos , Heterocromatina/metabolismo , Heterocromatina/genética , Camundongos Endogâmicos C57BL , Meio Ambiente , RNA Mensageiro/metabolismo , RNA Mensageiro/genética , Análise de Célula Única
15.
Microbiome Res Rep ; 2(1): 5, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38045609

RESUMO

Aim: There is growing evidence that physical activity modulates gut microbiota composition through complex interactions between diet and microbial species. On the other hand, next-generation sequencing techniques include shotgun metagenomics and 16S amplicon sequencing. These methodologies allow a comprehensive characterisation of microbial communities of athletes from different disciplines as well as non-professional players and sedentary adults exposed to training. This systematic review summarises recent applications of next-generation sequencing to characterise the athletic gut microbiome. Methods: A systematic review of microbiome research was performed to determine the association of microbiota composition profiles with sports performance. Results: Bibliographic analysis revealed the importance of a novel research trend aiming at deciphering the associations between individual microbial species and sports performance. In addition, literature review highlighted the role of butyrate-producing bacteria such as Anaerostipes hadrus, Clostridium bolteae, Faecalibacterium prausnitzii, Roseburia hominis and unidentified species belonging to Clostridiales, Lachnospiraceae and Subdoligranulum species in gut health and sports performance across several disciplines. Interestingly, metabolic activities of Prevotella copri and Veillonella atypica involved in branched amino acid and lactate metabolism may contribute to reducing muscular fatigue. Other microbial metabolic pathways of interest involved in carbohydrate metabolism showed increased proportions in athletes´ metagenomes. Conclusion: Future research will aim at developing personalised nutrition interventions to modulate key species associated with certain components of exercise.

16.
Front Sports Act Living ; 5: 1040955, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36866085

RESUMO

Introduction: Plasma miR-106b-5p levels have been described as an exercise performance predictor in male amateur runners, although no information is available about female athletes. The aim of this study was to analyze the predictive value on sports performance of plasma miR-106b-5p levels in elite female and male kayakers at the beginning and at the end of a training macrocycle, as well as the potential underlying molecular mechanisms using an in silico approach. Materials and Methods: Eight elite male (26.2 ± 3.6 years) and seven elite female (17.4 ± 0.5 years) kayakers from the Spanish national team. Two fasting blood samples were collected, starting point of the season (A) and maximum fitness level (B). Circulating plasma levels of miR-106b-5p were analyzed by RT-qPCR. Maximal 500 m performance was recorded at B. Results and Discussion: miR-106b-5p levels had no differences between A and B neither in women nor in men. In men but not in women, miR-106b-5p levels showed a negative significant correlation with performance in B which highlights its predictive value for performance. However, in women, progesterone emerged as a determinant and the ratio miR-106b-5p/progesterone showed a significant negative correlation with performance. In silico analysis reveals potential targets in a number of genes of relevant to exercise. Conclusions: miR-106b-5p emerges as a biomarker of athletic performance in men and in women, if the menstrual cycle is considered. This highlights the need to analyze molecular response to exercise in men and women separately, and considering the stage of the menstrual cycle in women as a relevant factor.

17.
Nutrients ; 15(17)2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37686720

RESUMO

Lifestyle factors, including diet and physical activity (PA), are known beneficial strategies to prevent and delay Alzheimer's disease (AD) development. Recently, microRNAs have emerged as potential biomarkers in multiple diseases, including AD. The aim of this review was to analyze the available information on the modulatory effect of lifestyle on microRNA expression in AD. Few studies have addressed this question, leaving important gaps and limitations: (1) in human studies, only circulating microRNAs were analyzed; (2) in mice studies, microRNA expression was only analyzed in brain tissue; (3) a limited number of microRNAs was analyzed; (4) no human nutritional intervention studies were conducted; and (5) PA interventions in humans and mice were poorly detailed and only included aerobic training. Despite this, some conclusions could be drawn. Circulating levels of let-7g-5p, miR-107, and miR-144-3p were associated with overall diet quality in mild cognitive impairment patients. In silico analysis showed that these microRNAs are implicated in synapse formation, microglia activation, amyloid beta accumulation, and pro-inflammatory pathways, the latter also being targeted by miR-129-5p and miR-192-5p, whose circulating levels are modified by PA in AD patients. PA also modifies miR-132, miR-15b-5p, miR-148b-3p, and miR-130a-5p expression in mice brains, which targets are related to the regulation of neuronal activity, ageing, and pro-inflammatory pathways. This supports the need to further explore lifestyle-related miRNA changes in AD, both as biomarkers and therapeutic targets.


Assuntos
Doença de Alzheimer , MicroRNA Circulante , MicroRNAs , Humanos , Animais , Camundongos , MicroRNAs/genética , Doença de Alzheimer/genética , Peptídeos beta-Amiloides , Estilo de Vida
18.
Am J Physiol Endocrinol Metab ; 302(6): E731-9, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22252943

RESUMO

The tissue-specific role of mitochondrial respiratory capacity in the development of insulin resistance and type 2 diabetes is unclear. We determined mitochondrial function in glycolytic and oxidative skeletal muscle and liver from lean (+/?) and obese diabetic (db/db) mice. In lean mice, the mitochondrial respiration pattern differed between tissues. Tissue-specific mitochondrial profiles were then compared between lean and db/db mice. In liver, mitochondrial respiratory capacity and protein expression, including peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), was decreased in db/db mice, consistent with increased mitochondrial fission. In glycolytic muscle, mitochondrial respiration, as well as protein and mRNA expression of mitochondrial markers, was increased in db/db mice, suggesting increased mitochondrial content and fatty acid oxidation capacity. In oxidative muscle, mitochondrial complex I function and PGC-1α and mitochondrial transcription factor A (TFAM) protein levels were decreased in db/db mice, along with increased level of proteins related to mitochondrial dynamics. In conclusion, mitochondrial respiratory performance is under the control of tissue-specific mechanisms and is not uniformly altered in response to obesity. Furthermore, insulin resistance in glycolytic skeletal muscle can be maintained by a mechanism independent of mitochondrial dysfunction. Conversely, insulin resistance in liver and oxidative skeletal muscle from db/db mice is coincident with mitochondrial dysfunction.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Resistência à Insulina/fisiologia , Mitocôndrias/metabolismo , Obesidade/metabolismo , Fenômenos Fisiológicos da Nutrição Animal , Animais , Glicemia/metabolismo , Western Blotting , Linhagem da Célula , Proteínas de Ligação a DNA/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glicogênio/sangue , Glicólise , Proteínas de Grupo de Alta Mobilidade/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Obesos , Mitocôndrias Hepáticas/metabolismo , Mitocôndrias Musculares/metabolismo , Consumo de Oxigênio/fisiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Reação em Cadeia da Polimerase em Tempo Real , Transativadores/metabolismo , Fatores de Transcrição , Triglicerídeos/sangue
19.
Artigo em Inglês | MEDLINE | ID: mdl-35457361

RESUMO

Combat sports athletes competing in the same discipline exhibit notable and substantial differences in body weight, body composition (BC) and adiposity. No studies have considered the influence of adiposity levels in the agreement between different BC assessment methods. The aim of this study was to analyze the influence of adiposity in the agreement between different methods used to estimate relative body fat (%BF) in Olympic combat sport athletes. A total of 38 male athletes were evaluated using air displacement plethysmography and dual-energy X-ray absorptiometry (DXA) as laboratory methods, and bioelectrical impedance analysis (BIA), near-infrared interactance (NIR) and anthropometry as field methods. All methods were compared to DXA. Agreement analyses were performed by means of individual intraclass correlation coefficients (ICCs) for each method compared to DXA, Bland−Altman plots and paired Student t-tests. The ICCs for the different methods compared to DXA were analyzed, considering tertiles of %BF, tertiles of body weight and type of sport. For the whole group, individual ICCs oscillated between 0.806 for BIA and 0.942 for anthropometry. BIA showed a statistically significant underestimation of %BF when compared to DXA. The agreement between every method and DXA was not affected by %BF, but it was highest in athletes at the highest %BF tertile (>13%). The ICC between NIR and DXA was poor in 72−82 kg athletes. Our results indicate that field methods are useful for routine %BF analysis, and that anthropometry is particularly appropriate, as it showed the highest accuracy irrespective of the athletes' adiposity.


Assuntos
Tecido Adiposo , Adiposidade , Absorciometria de Fóton , Tecido Adiposo/diagnóstico por imagem , Composição Corporal , Peso Corporal , Impedância Elétrica , Feminino , Humanos , Masculino , Obesidade
20.
Vet Sci ; 9(12)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36548822

RESUMO

Studying microRNA (miRNAs) in certain agri-food products is attractive because (1) they have potential as biomarkers that may allow traceability and authentication of such products; and (2) they may reveal insights into the products' functional potential. The present study evaluated differences in miRNAs levels in fat and cellular fractions of tank milk collected from commercial farms which employ extensive or intensive dairy production systems. We first sequenced miRNAs in three milk samples from each production system, and then validated miRNAs whose levels in the cellular and fat fraction differed significantly between the two production systems. To accomplish this, we used quantitative PCR with both fractions of tank milk samples from another 20 commercial farms. Differences in miRNAs were identified in fat fractions: overall levels of miRNAs, and, specifically, the levels of bta-mir-215, were higher in intensive systems than in extensive systems. Bovine mRNA targets for bta-miR-215 and their pathway analysis were performed. While the causes of these miRNAs differences remain to be elucidated, our results suggest that the type of production system could affect miRNAs levels and potential functionality of agri-food products of animal origin.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA