RESUMO
The human transmembrane 6 superfamily member 2 (TM6SF2) gene has been implicated in plasma lipoprotein metabolism, alcoholic and non-alcoholic fatty liver disease and myocardial infarction in multiple genome-wide association studies. To investigate the role of Tm6sf2 in metabolic homeostasis, we generated mice with elevated expression using adeno-associated virus (AAV)-mediated gene delivery. Hepatic overexpression of mouse Tm6sf2 resulted in phenotypes previously observed in Tm6sf2-deficient mice including reduced plasma lipid levels, diminished hepatic triglycerides secretion and increased hepatosteatosis. Furthermore, increased hepatic Tm6sf2 expression protected against the development of atherosclerosis in LDL-receptor/ApoB48-deficient mice. In cultured human hepatocytes, Tm6sf2 overexpression reduced apolipoprotein B secretion and resulted in its accumulation within the endoplasmic reticulum (ER) suggesting impaired ER-to-Golgi trafficking of pre-very low-density lipoprotein (VLDL) particles. Analysis of two metabolic trait-associated coding polymorphisms in the human TM6SF2 gene (rs58542926 and rs187429064) revealed that both variants impact TM6SF2 expression by affecting the rate of protein turnover. These data demonstrate that rs58542926 (E167K) and rs187429064 (L156P) are functional variants and suggest that they influence metabolic traits through altered TM6SF2 protein stability. Taken together, our results indicate that cellular Tm6sf2 level is an important determinant of VLDL metabolism and further implicate TM6SF2 as a causative gene underlying metabolic disease and trait associations at the 19p13.11 locus.
Assuntos
Apolipoproteínas B/metabolismo , Aterosclerose/metabolismo , Fígado/metabolismo , Proteínas de Membrana/biossíntese , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Apolipoproteínas B/genética , Aterosclerose/sangue , Aterosclerose/genética , Células Cultivadas , Retículo Endoplasmático/metabolismo , Feminino , Estudo de Associação Genômica Ampla , Complexo de Golgi/metabolismo , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Lipoproteínas/sangue , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/genética , Polimorfismo de Nucleotídeo Único , Transporte Proteico , Triglicerídeos/sangueRESUMO
AIMS/HYPOTHESIS: Endothelial cells (ECs) play an essential role in pancreatic organogenesis. We hypothesise that effective in vitro interactions between human microvascular endothelial cells (HMECs) and human pluripotent stem cells (hPSCs) results in the generation of functional pancreatic beta cells. METHODS: Embryoid bodies (EBs) derived from hPSCs were cultured alone (controls) or with ECs in collagen gels. Subsequently, cells were analysed for pancreatic beta cell markers, and then isolated and expanded. Insulin secretion in response to glucose was evaluated in vitro by static and dynamic (perifusion) assays, and in vivo by EB transplantation into immunodeficient mice. RESULTS: Co-cultured EBs had a higher expression of mature beta cells markers and enhanced insulin secretion in vitro, compared with controls. In mice, transplanted EBs had higher levels of human C-peptide secretion with a significant reduction in hyperglycaemia after the selective destruction of native pancreatic beta cells. In addition, there was significant in vitro upregulation of bone morphogenetic proteins 2 and 4 (BMP-2, 4) in co-cultured cells, compared with controls. CONCLUSIONS/INTERPRETATION: ECs provide essential signalling in vitro, such as activation of the BMP pathway, for derivation of functional insulin-producing beta cells from hPSCs.
Assuntos
Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/metabolismo , Insulina/sangue , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Animais , Proteína Morfogenética Óssea 2/metabolismo , Proteína Morfogenética Óssea 4/metabolismo , Linhagem Celular , Corpos Embrioides/citologia , Corpos Embrioides/metabolismo , Humanos , Hiperglicemia/metabolismo , Imuno-Histoquímica , CamundongosRESUMO
SARS-CoV-2, responsible for the COVID-19 pandemic, causes respiratory failure and damage to multiple organ systems. The emergence of viral variants poses a risk of vaccine failures and prolongation of the pandemic. However, our understanding of the molecular basis of SARS-CoV-2 infection and subsequent COVID-19 pathophysiology is limited. In this study, we have uncovered a critical role for the evolutionarily conserved Hippo signaling pathway in COVID-19 pathogenesis. Given the complexity of COVID-19 associated cell injury and immunopathogenesis processes, we investigated Hippo pathway dynamics in SARS-CoV-2 infection by utilizing COVID-19 lung samples, and human cell models based on pluripotent stem cell-derived cardiomyocytes (PSC-CMs) and human primary lung air-liquid interface (ALI) cultures. SARS-CoV-2 infection caused activation of the Hippo signaling pathway in COVID-19 lung and in vitro cultures. Both parental and Delta variant of concern (VOC) strains induced Hippo pathway. The chemical inhibition and gene knockdown of upstream kinases MST1/2 and LATS1 resulted in significantly enhanced SARS-CoV-2 replication, indicating antiviral roles. Verteporfin a pharmacological inhibitor of the Hippo pathway downstream transactivator, YAP, significantly reduced virus replication. These results delineate a direct antiviral role for Hippo signaling in SARS-CoV-2 infection and the potential for this pathway to be pharmacologically targeted to treat COVID-19.
RESUMO
SARS-CoV-2 has infected hundreds of millions of people with over four million dead, resulting in one of the worst global pandemics in recent history. Neurological symptoms associated with COVID-19 include anosmia, ageusia, headaches, confusion, delirium, and strokes. These may manifest due to viral entry into the central nervous system (CNS) through the blood-brain barrier (BBB) by means of ill-defined mechanisms. Here, we summarize the abilities of SARS-CoV-2 and other neurotropic RNA viruses, including Zika virus and Nipah virus, to cross the BBB into the CNS, highlighting the role of magnetic resonance imaging (MRI) in assessing presence and severity of brain structural changes in COVID-19 patients. We present new insight into key mutations in SARS-CoV-2 variants B.1.1.7 (P681H) and B.1.617.2 (P681R), which may impact on neuropilin 1 (NRP1) binding and CNS invasion. We postulate that SARS-CoV-2 may infect both peripheral cells capable of crossing the BBB and brain endothelial cells to traverse the BBB and spread into the brain. COVID-19 patients can be followed up with MRI modalities to better understand the long-term effects of COVID-19 on the brain.
Assuntos
Barreira Hematoencefálica , Infecções por Henipavirus , Vírus Nipah , SARS-CoV-2 , Infecção por Zika virus , Zika virus , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/fisiopatologia , Barreira Hematoencefálica/virologia , COVID-19/epidemiologia , COVID-19/genética , COVID-19/metabolismo , COVID-19/fisiopatologia , Infecções por Henipavirus/epidemiologia , Infecções por Henipavirus/genética , Infecções por Henipavirus/metabolismo , Infecções por Henipavirus/fisiopatologia , Humanos , Mutação , Vírus Nipah/genética , Vírus Nipah/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Zika virus/genética , Zika virus/metabolismo , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/genética , Infecção por Zika virus/metabolismo , Infecção por Zika virus/fisiopatologiaRESUMO
Expression of genes associated with inflammation was analyzed during differentiation of human pluripotent stem cells (PSCs) to hepatic cells. Messenger RNA transcript profiles of differentiated endoderm (day 5), hepatoblast (day 15) and hepatocyte-like cells (day 21) were obtained by RNA sequencing analysis. When compared to endoderm cells an immature cell type, the hepatic cells (days 15 and 21) had significantly higher expression of acute phase protein genes including complement factors, coagulation factors, serum amyloid A and serpins. Furthermore, hepatic phase of cells expressed proinflammatory cytokines IL18 and IL32 as well as cytokine receptors IL18R1, IL1R1, IL1RAP, IL2RG, IL6R, IL6ST and IL10RB. These cells also produced CCL14, CCL15, and CXCL- 1, 2, 3, 16 and 17 chemokines. Endoderm cells had higher levels of chemokine receptors, CXCR4 and CXCR7, than that of hepatic cells. Sirtuin family of genes involved in aging, inflammation and metabolism were differentially regulated in endoderm and hepatic phase cells. Ligands and receptors of the tumor necrosis factor (TNF) family as well as downstream signaling factors TRAF2, TRAF4, FADD, NFKB1 and NFKBIB were differentially expressed during hepatic differentiation.