RESUMO
Since the discovery of immunoglobulin E (IgE) as a mediator of allergic diseases in 1967, our knowledge about the immunological mechanisms of IgE-mediated allergies has remarkably increased. In addition to understanding the immune response and clinical symptoms, allergy diagnosis and management depend strongly on the precise identification of the elicitors of the IgE-mediated allergic reaction. In the past four decades, innovations in bioscience and technology have facilitated the identification and production of well-defined, highly pure molecules for component-resolved diagnosis (CRD), allowing a personalized diagnosis and management of the allergic disease for individual patients. The first edition of the "EAACI Molecular Allergology User's Guide" (MAUG) in 2016 rapidly became a key reference for clinicians, scientists, and interested readers with a background in allergology, immunology, biology, and medicine. Nevertheless, the field of molecular allergology is moving fast, and after 6 years, a new EAACI Taskforce was established to provide an updated document. The Molecular Allergology User's Guide 2.0 summarizes state-of-the-art information on allergen molecules, their clinical relevance, and their application in diagnostic algorithms for clinical practice. It is designed for both, clinicians and scientists, guiding health care professionals through the overwhelming list of different allergen molecules available for testing. Further, it provides diagnostic algorithms on the clinical relevance of allergenic molecules and gives an overview of their biology, the basic mechanisms of test formats, and the application of tests to measure allergen exposure.
Assuntos
Hipersensibilidade , Humanos , Hipersensibilidade/diagnóstico , Hipersensibilidade/terapia , Alérgenos , Imunoglobulina EAssuntos
Cryptomeria , Alérgenos , Antígenos de Plantas , Giberelinas , Humanos , Proteínas de Plantas , PólenRESUMO
The Capsicum genus belongs to the Solanaceae family. Bell or chili peppers are consumed worldwide, but allergy to Capsicum is rare. It is involved in the celery-birch-mugwort-spice syndrome and cross-reactivities were reported with latex. Several allergens have been described, but only 2 are referenced in the World Health Organization/International Union of Immunological Societies allergen data bank, a thaumatin-like protein and a profilin. A patient allergic to bell/chili pepper, peach, orange and Japanese cedar pollen was clinically and biologically analyzed including direct and competitive immunoblots and basophil activation tests (BATs) with allergenic source extracts and recombinant gibberellin-regulated proteins (GRPs). The patient was shown to be sensitized to Cap a 7, the GRP of Capsicum annuum newly described herein. Cross-reactivities were demonstrated between various GRPs from bell/chili pepper, peach, orange and Japanese cedar pollen either in native form in the different extracts or as recombinant allergens. A similar immunoglobulin E reactivity was found also in Capsicum chinense and against snakin-1, the GRP from potato. The patient showed a positive BAT with recombinant Cry j 7, Pru p 7 and Cap a 7, but not with recombinant snakin-1. Despite the ubiquitous nature of GRPs in plants and the immunochemical cross-reactivity observed between different GRPs, clinically relevant sensitization to this protein family seems restricted to some allergenic sources, often associated with Cupressaceae pollen allergy, and to some patients, therefore reflecting very specific and peculiar mechanisms of conditional sensitization.