Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Environ Monit Assess ; 187(1): 4115, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25384372

RESUMO

In this study, we explored the multiple heavy metal-resistant yeast isolated from heavy metal-polluted environment. The isolated yeast showed maximum growth at 30 °C, pH 7.0, and the strain was identified as Candida tropicalis through 18S ribosomal RNA (rRNA) gene sequence analysis. Yeast cells grew well in medium containing different concentrations of heavy metal ions [CdCl2, Pb(NO3)2, NaAsO2, CuSO4 and K2Cr2O7]. Minimum inhibitory concentration (MIC) against different metal ions was ranged from 5 to 19 mM, and the metal resistance value against each metal observed by yeast cells was 5 mM (Cr), 10 mM (Cd), 15 mM (As), 14 mM (Cu) and 19 mM (Pb) and increased in the following order: Pb > Cu > As ≥ Cd > Cr. The total cellular glutathione, GSH/GSSG redox couple and metallothioneins like protein (MT) were assayed by growing cultures for 24 h and exposed to 100 mg/L of each heavy metal ion. Remarkable increase in γ-glutamylcysteinylglycine (GSH) level was determined in arsenic and cadmium treatment followed by chromium, lead and copper. Stressed cells had much more oxidized GSH than unstressed cells. GSH/GSSG ratio was significantly increased in cadmium and copper treatment in contrast to chromium, arsenic and lead. Statistical analysis revealed significantly higher cysteine level in all metal-treated samples as compared to control. Antioxidant glutathione transferase activity was not detected in metal-treated and untreated yeast samples. One-dimensional electrophoresis of proteins revealed marked differences in banding pattern of heavy metal-exposed yeast samples. A prominent 20 kDa band was observed in all treated samples suggesting that some differential proteins could be over-expressed during heavy metal treatment and might be involved in cell resistance mechanisms.


Assuntos
Glutationa/metabolismo , Metais Pesados/toxicidade , Estresse Oxidativo , Antioxidantes/metabolismo , Arsênio/análise , Cádmio/análise , Candida tropicalis/isolamento & purificação , Cromo/análise , Cobre/análise , Monitoramento Ambiental , Metalotioneína/metabolismo , Metais/análise , Metais Pesados/metabolismo
2.
Pharmaceuticals (Basel) ; 17(8)2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39204089

RESUMO

Bone health is a critical aspect of overall well-being, and disorders such as osteoporosis pose significant challenges worldwide. East Asian Herbal Medicine (EAHM), with its rich history and holistic approach, offers promising avenues for enhancing bone regeneration. In this critical review article, we analyze the intricate mechanisms through which EAHM compounds modulate bone health. We explore the interplay between osteogenesis and osteoclastogenesis, dissect signaling pathways crucial for bone remodeling and highlight EAHM anti-inflammatory effects within the bone microenvironment. Additionally, we emphasize the promotion of osteoblast viability and regulation of bone turnover markers by EAHM compounds. Epigenetic modifications emerge as a fascinating frontier where EAHM influences DNA methylation and histone modifications to orchestrate bone regeneration. Furthermore, we highlight EAHM effects on osteocytes, mesenchymal stem cells and immune cells, unraveling the holistic impact in bone tissue. Finally, we discuss future directions, including personalized medicine, combinatorial approaches with modern therapies and the integration of EAHM into evidence-based practice.

3.
Pharmaceuticals (Basel) ; 17(10)2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39458926

RESUMO

Background: Arthritis, a debilitating joint disease, remains a significant global health burden. This study uncovers the therapeutic potential of the medicinal plant Smilax glabra Roxb. (SGR) in attenuating progression of disease by modulating immune responses. Methods: Through computational approaches, key bioactive compounds in SGR were identified by using freely available databases: TCMSP, TCMID, HIT2.0, HERB, and INPUT in order to elucidate their underlying mechanisms of action. Therapeutic targets for the disease have been retrieved by TTD, GeneCard, and OMIM databases. The STRING database was used to analyze the protein-protein interactions (PPI) of intersecting genes. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to reveal the functional roles of genes. Mcule was used for molecular docking and binding affinity of compounds and targets were evaluated by DeepPurpose model. ALP activity, cell viability assay, TRAP staining were also performed. Results: A total of 14 active SGR compounds with 59 common targets for arthritis have been identified. These targets have a major role in controlling biological processes such as wound healing, oxygen responses, and chemical stimuli. Molecular docking by Mcule platform demonstrated that quercetin and ß-sitosterol showed higher binding energy affinities with TNF, TP53, PTGS2, and JUN as compared to other targets. To explore the complex relationship between compounds and targets, pre-trained Davis and KIBA models were used to predict the affinity values of selected compounds. In MC3T3-E1 cells, ALP activity was significantly increased and bone marrow macrophages (BMM) showed a low number of TRAP-positive cells in SGR-treated cells. Conclusions: Our findings demonstrate that SGR effectively inhibits/regulates inflammatory responses, prevents cartilage degradation, promotes bone regeneration, and can be used as a promising candidate for the development of novel arthritis treatment.

4.
Surg Infect (Larchmt) ; 21(4): 323-331, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31829828

RESUMO

Background: Although the survival advantage of bilateral internal thoracic artery grafting (BITA) is well known in patients undergoing coronary artery bypass grafting (CABG), this technique has not been widely adopted. This is mainly because of the increased risk of deep sternal wound infections (DSWI) associated with its use. However, in recent years the overall risk of DSWI has decreased. This is mainly because of strategies that have been adopted to decrease the risk of these infections in patients undergoing CABG. Conclusion: In this review we identified DSWI preventive strategies and described them in detail so that their use by surgeons can be increased. This would minimize the risk of DSWI after BITA grafting and maximize the use of this highly effective surgical technique.


Assuntos
Ponte de Artéria Coronária/efeitos adversos , Ponte de Artéria Coronária/métodos , Artéria Torácica Interna/cirurgia , Esterno/cirurgia , Infecção da Ferida Cirúrgica/epidemiologia , Antibacterianos/administração & dosagem , Glicemia , Índice de Massa Corporal , Portador Sadio/diagnóstico , Portador Sadio/tratamento farmacológico , Clorexidina/administração & dosagem , Comorbidade , Humanos , Controle de Infecções/métodos , Tempo de Internação , Mupirocina/administração & dosagem , Estado Nutricional , Estudos Retrospectivos , Fatores de Risco , Fatores Sexuais
5.
Elife ; 72018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29869985

RESUMO

Cellular redox status affects diverse cellular functions, including proliferation, protein homeostasis, and aging. Thus, individual differences in redox status can give rise to distinct sub-populations even among cells with identical genetic backgrounds. Here, we have created a novel methodology to track redox status at single cell resolution using the redox-sensitive probe Grx1-roGFP2. Our method allows identification and sorting of sub-populations with different oxidation levels in either the cytosol, mitochondria or peroxisomes. Using this approach, we defined a redox-dependent heterogeneity of yeast cells and characterized growth, as well as proteomic and transcriptomic profiles of distinctive redox subpopulations. We report that, starting in late logarithmic growth, cells of the same age have a bi-modal distribution of oxidation status. A comparative proteomic analysis between these populations identified three key proteins, Hsp30, Dhh1, and Pnc1, which affect basal oxidation levels and may serve as first line of defense proteins in redox homeostasis.


Assuntos
Proteoma/análise , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Análise de Célula Única/métodos , Transcriptoma , Citosol/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Homeostase , Mitocôndrias/metabolismo , Oxirredução , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética
6.
J Proteomics ; 141: 47-56, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27090762

RESUMO

UNLABELLED: A metal-resistant Rhodotorula mucilaginosa strain was isolated from an industrial wastewater. Effects on reduced/oxidized glutathione (GSSG/GSH), antioxidant enzymes and proteome were assessed on metal challenge (100mg/L). Increased GSH (mM/g) was found with CdCl2 (18.43±3.34), NaAsO2 (14.76±2.14), CuSO4 (14.73±2.49), and Pb(NO3)2 (15.74±5.3) versus control (7.67±0.95). GSH:GSSG ratio decreased with CdCl2, NaAsO2, and Pb(NO3)2 but not with CuSO4 and cysteine-containing protein levels increased with CdCl2 and NaAsO2. NaAsO2 exposure enhanced glutathione transferase activity but this decreased with CdCl2. Both metals significantly increased glutathione reductase and catalase activities. Metabolism-dependent uptake of Cd and As (12-day exposure) of approximately 65mg/g was observed in live cells with greater cell surface interaction for As compared to Cd. A particular role for arsenic oxidase in As resistance was identified. One dimensional electrophoresis revealed higher oxidation of protein thiols in response to NaAsO2 than to CdCl2. Two dimensional electrophoresis showed altered abundance of some proteins on metal treatment. Selected spots were excised for mass spectrometry and seven proteins identified. Under oxidative stress conditions, xylose reductase, putative chitin deacetylase, 20S proteasome subunit, eukaryotic translation elongation factor 2, valine-tRNA ligase and a metabolic enzyme F0F1 ATP synthase alpha subunit were all expressed as well as a unique hypothetical protein. These may comprise a protein expression signature for metal-induced oxidation in this yeast. SIGNIFICANCE: Fungi are of widespread importance in agriculture, biodegradation and often show extensive tolerance to heavy metals. This makes them of interest from the perspective of bioremediation. In this study an environmental isolate of R. mucilaginosa showing extensive tolerance of a panel of heavy metals, in particular cadmium and arsenic, was studied. Several biochemical parameters such as activity of antioxidant enzymes, status of reduced and oxidized glutathione and thiols associated with proteins were all found to be affected by metal exposure. A detailed analysis with arsenic and cadmium pointed to a particular role for arsenic oxidase in arsenic bioaccumulation and tolerance. This is the first time this has been reported in R. mucilaginosa, and suggests that this isolate may have potential in biosorption of these metals in the environment. Proteomic analysis revealed that seven proteins with a variety of roles - ATP synthesis, protein degradation/synthesis, and metabolism of xylose and chitin - were differentially affected by metal exposure in a manner consistent with oxidative stress. These may therefore represent a protein expression signature for exposure to cadmium and arsenic.


Assuntos
Arsênio/farmacologia , Biodegradação Ambiental , Cádmio/farmacologia , Proteômica/métodos , Rhodotorula/química , Catalase/efeitos dos fármacos , Catalase/metabolismo , Proteínas Fúngicas/efeitos dos fármacos , Proteínas Fúngicas/metabolismo , Glutationa Redutase/efeitos dos fármacos , Glutationa Redutase/metabolismo , Metais Pesados/farmacologia , Oxirredução/efeitos dos fármacos , Proteoma , Rhodotorula/efeitos dos fármacos , Rhodotorula/metabolismo , Transcriptoma
7.
PLoS One ; 9(7): e102340, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25062082

RESUMO

Trichosporon asahii is a yeast pathogen implicated in opportunistic infections. Cultures of an isolate collected from industrial wastewater were exposed for 2 days to 100 mg/L sodium arsenite (NaAsO2) and cadmium (CdCl2). Both metals reduced glutathione transferase (GST) activity but had no effect on superoxide dismutase or catalase. NaAsO2 exposure increased glutathione reductase activity while CdCl2 had no effect. Protein thiols were labeled with 5-iodoacetamido fluorescein followed by one dimensional electrophoresis which revealed extensive protein thiol oxidation in response to CdCl2 treatment but thiol reduction in response to NaAsO2. Two dimensional electrophoresis analyses showed that the intensity of some protein spots was enhanced on treatment as judged by SameSpots image analysis software. In addition, some spots showed decreased IAF fluorescence suggesting thiol oxidation. Selected spots were excised and tryptic digested for identification by MALDI-TOF/TOF MS. Twenty unique T. asahii proteins were identified of which the following proteins were up-regulated in response to NaAsO2: 3-isopropylmalate dehydrogenase, phospholipase B, alanine-glyoxylate aminotransferase, ATP synthase alpha chain, 20S proteasome beta-type subunit Pre3p and the hypothetical proteins A1Q1_08001, A1Q2_03020, A1Q1_06950, A1Q1_06913. In addition, the following showed decreased thiol-associated fluorescence consistent with thiol oxidation; aconitase; aldehyde reductase I; phosphoglycerate kinase; translation elongation factor 2; heat shock protein 70 and hypothetical protein A1Q2_04745. Some proteins showed both increase in abundance coupled with decrease in IAF fluorescence; 3-hydroxyisobutyryl-CoA hydrolase; homoserine dehydrogenase Hom6 and hypothetical proteins A1Q2_03020 and A1Q1_00754. Targets implicated in redox response included 10 unique metabolic enzymes, heat shock proteins, a component of the 20S proteasome and translation elongation factor 2. These data suggest extensive proteomic alterations in response to metal-induced oxidative stress in T. asahii. Amino acid metabolism, protein folding and degradation are principally affected.


Assuntos
Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Oxirredução , Estresse Oxidativo/genética , Proteômica , Arsenitos/toxicidade , Cádmio/toxicidade , Eletroforese em Gel Bidimensional , Glutationa , Glutationa Transferase/biossíntese , Glutationa Transferase/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Dobramento de Proteína/efeitos dos fármacos , Compostos de Sódio/toxicidade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Trichosporon/efeitos dos fármacos , Trichosporon/enzimologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-23369298

RESUMO

In the present investigation the fungi, Aspergillus niger and Nigrospora sp. were employed for decolorization of Synozol red HF-6BN. Decolorization study showed that Aspergillus niger and Nigrospora sp. were able to decolorize 88% and 96% Synozol red 6BN, respectively, in 24 days. It was also studied that 86% and 90% Synozol red containing of dye effluent was decolorized by Aspergillus niger and Nigrospora sp. after 28 days of incubation at room temperature. A fungal-based protein with relative molecular mass of 70 kDa was partially purified and examined for enzymatic characteristics. The enzyme exhibited highest activity at temperature ranging from 40-50°C and at pH=6.0. The enzyme activity was enhanced in the presence of metal cations. High performance liquid chromatography analysis confirmed that these fungal strains are capable to degrade Synozol red dye into metabolites. No zones of inhibition on agar plates and growth of Vigna radiata in the presence of dye extracted sample, indicated that the fungal degraded dye metabolites are nontoxic to beneficial micro-flora and plant growth. Aspergillus niger and Nigrospora sp. have promising potential in color removal from textile wastewater-containing azo dyes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA