RESUMO
A global warming-induced transition from glacial to periglacial processes has been identified in mountainous regions around the world. Degrading permafrost in pristine periglacial environments can produce acid rock drainage (ARD) and cause severe ecological damage in areas underlain by sulfide-bearing bedrock. Limnological and paleolimnological approaches were used to assess and compare ARDs generated by rock glaciers, a typical landform of the mountain permafrost domain, and their effects on alpine headwater lakes with similar morphometric features and underlying bedrock geology, but characterized by different intensities of frost action in their catchments during the year. We argue that ARD and its effects on lakes are more severe in the alpine periglacial belt with mean annual air temperatures (MAAT) between -2°C and +3°C, where groundwater persists in the liquid phase for most of the year, in contrast to ARD in the periglacial belt where frost action dominates (MAAT < -2°C). The findings clearly suggest that the ambient air temperature is an important factor affecting the ARD production in alpine periglacial environments. Applying the paleoecological analysis of morphological abnormalities in chironomids through the past millennium, we tested and rejected the hypothesis that unfavorable conditions for aquatic life in the ARD-stressed lakes are largely related to the temperature increase over recent decades, responsible for the enhanced release of ARD contaminants. Our results indicate that the ARDs generated in the catchments are of a long-lasting nature and the frequency of chironomid morphological deformities was significantly higher during the Little Ice Age (LIA) than during pre- or post-LIA periods, suggesting that lower water temperatures may increase the adverse impacts of ARD on aquatic invertebrates. This highlights that temperature-mediated modulations of the metabolism and life cycle of aquatic organisms should be considered when reconstructing long-term trends in the ecotoxicological state of lakes.
Assuntos
Camada de Gelo , Pergelissolo , Animais , Aquecimento Global , Concentração de Íons de Hidrogênio , Invertebrados/fisiologia , Lagos/química , TemperaturaRESUMO
Despite the fact that rock glaciers are one of the most common geomorphological expressions of mountain permafrost, the impacts of their solute fluxes on lakes still remain largely obscure. We examined water and sediment chemistry, and biota of two neighboring water bodies with and without a rock glacier in their catchments in the European Alps. Paleolimnological techniques were applied to track long-term temporal trends in the ecotoxicological state of the water bodies and to establish their baseline conditions. We show that the active rock glacier in the mineralized catchment of Lake Rasass (RAS) represents a potent source of acid rock drainage that results in enormous concentrations of metals in water, sediment, and biota of RAS. The incidence of morphological abnormalities in the RAS population of Pseudodiamesa nivosa, a chironomid midge, is as high as that recorded in chironomid populations inhabiting sites heavily contaminated by trace metals of anthropogenic origin. The incidence of morphological deformities in P. nivosa of â¼70% persisted in RAS during the last 2.5 millennia and was â¼40% in the early Holocene. The formation of RAS at the toe of the rock glacier most probably began at the onset of acidic drainage in the freshly deglaciated area. The present adverse conditions are not unprecedented in the lake's history and cannot be associated exclusively with enhanced thawing of the rock glacier in recent years.
Assuntos
Camada de Gelo/química , Lagos/química , Ciclo Hidrológico , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Sedimentos Geológicos , Metais/análiseRESUMO
We present a dataset of subfossil chironomid assemblages in the MUT-10 sediment core obtained from the high alpine lake Mutterbergersee in the Austrian Alps in 2010. The data were presented in the research article by Ilyashuk et al. (2019) "The Little Ice Age signature in a 700-year high-resolution chironomid record of summer temperatures in the Central Eastern Alps". In addition to the results of the chironomid analysis of 100 sediment samples presented in this article, we also include chironomid assemblage data from an additional 48 sediment samples that complement this dataset. The data includes raw chironomid counts, percent abundance of chironomid taxa, as well as mean July air temperature estimates derived from the chironomid record based on a chironomid-temperature transfer function. We also provide information on age-dating of the sedimentary sequence. Given the high temporal resolution and the robust age-depth model of the record, the chironomid-based reconstruction of temperature since AD 1300 provides a detailed documentation of climate change in the Eastern Alps from the Little Ice Age onwards and can be used for comparison with other independent proxy-based climate reconstructions. In addition to the data, we detail the sample processing for subfossil chironomid analysis and provide a detailed description of the reconstruction technique used for producing chironomid-based quantitative temperature inferences.
RESUMO
Few well-dated, quantitative Holocene temperature reconstructions exist from high-altitude sites in the Central Eastern Alps. Here, we present a chironomid-based quantitative reconstruction of mean July air temperatures (T(July)) throughout the Holocene for a remote high-mountain lake, Schwarzsee ob Sölden, situated above the treeline at 2796 m a.s.l. in the Austrian Alps. Applying a chironomid-temperature inference model developed from lakes of the Alpine region to a high-resolution chironomid record from the lake provides evidence for early Holocene (ca 10000-8600 cal yr BP) T(July) of up to 8.5 °C, i.e. >4 °C above the modern (1977-2006) mean July temperature. The reconstruction reveals the so-called '8.2-ka cold event' centered at ca 8250-8000 cal yr BP with temperatures ca 3 °C below the early-Holocene thermal maximum. Rather warm (ca 6 °C) and productive conditions prevailed during ca 7900-4500 cal yr BP. The chironomid record suggests a climate transition between ca 5200 and 4500 cal yr BP to cooler T(July). A distinct cooling trend is evident from ca 4500 until ca 2500 cal yr BP. Thereafter, the study site experienced its coldest conditions (around 4 °C or less) throughout the rest of the Holocene, with the exception of the warming trend during the late 20th century. Beside other factors, the Northern Hemisphere summer insolation seems to be the major driving force for the long-term trends in T(July) at high altitudes in the Eastern Alps. Due to the extreme location of the lake and the limited temperature range represented by the applied calibration data set, the chironomid-based temperature reconstruction fails to track phases of the late-Holocene climatic history with T(July) cooler than 4 °C. Further chironomid-based palaeoclimate model and down-core studies are required to address this problem, provide more realistic T(July) estimates from undisturbed high-altitude lakes in the Alps, and extract a reliable regional temperature signal.
RESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
A comprehensive database of paleoclimate records is needed to place recent warming into the longer-term context of natural climate variability. We present a global compilation of quality-controlled, published, temperature-sensitive proxy records extending back 12,000 years through the Holocene. Data were compiled from 679 sites where time series cover at least 4000 years, are resolved at sub-millennial scale (median spacing of 400 years or finer) and have at least one age control point every 3000 years, with cut-off values slackened in data-sparse regions. The data derive from lake sediment (51%), marine sediment (31%), peat (11%), glacier ice (3%), and other natural archives. The database contains 1319 records, including 157 from the Southern Hemisphere. The multi-proxy database comprises paleotemperature time series based on ecological assemblages, as well as biophysical and geochemical indicators that reflect mean annual or seasonal temperatures, as encoded in the database. This database can be used to reconstruct the spatiotemporal evolution of Holocene temperature at global to regional scales, and is publicly available in Linked Paleo Data (LiPD) format.
RESUMO
An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RESUMO
Despite the fact that the Little Ice Age (LIA) is well documented for the European Alps, substantial uncertainties concerning the regional spatio-temporal patterns of temperature changes associated with the LIA still exist, especially for their eastern sector. Here we present a high-resolution (4-10 years) 700-year long mean July air temperature reconstruction based on subfossil chironomid assemblages from a remote lake in the Austrian Eastern Alps to gain further insights into the LIA climatic deterioration in the region. The record provides evidence for a prolonged period of predominantly cooler conditions during AD 1530-1920, broadly equivalent to the climatically defined LIA in Europe. The main LIA phase appears to have consisted of two cold time intervals divided by slightly warmer episodes in the second half of the 1600s. The most severe cooling occurred during the eighteenth century. The LIA temperature minimum about 1.5 °C below the long-term mean recorded in the mid-1780 s coincides with the strongest volcanic signal found in the Greenland ice cores over the past 700 years and may be, at least in part, a manifestation of cooling that followed the long-lasting AD 1783-1784 Laki eruption. A continuous warming trend is evident since ca AD 1890 (1.1 °C in 120 years). The chironomid-inferred temperatures show a clear correlation with the instrumental data and reveal a close agreement with paleotemperature evidence from regional high-elevation tree-ring chronologies. A considerable amount of the variability in the temperature record may be linked to changes in the North Atlantic Oscillation.
RESUMO
Comparisons of climate model hindcasts with independent proxy data are essential for assessing model performance in non-analogue situations. However, standardized palaeoclimate data sets for assessing the spatial pattern of past climatic change across continents are lacking for some of the most dynamic episodes of Earth's recent past. Here we present a new chironomid-based palaeotemperature dataset designed to assess climate model hindcasts of regional summer temperature change in Europe during the late-glacial and early Holocene. Latitudinal and longitudinal patterns of inferred temperature change are in excellent agreement with simulations by the ECHAM-4 model, implying that atmospheric general circulation models like ECHAM-4 can successfully predict regionally diverging temperature trends in Europe, even when conditions differ significantly from present. However, ECHAM-4 infers larger amplitudes of change and higher temperatures during warm phases than our palaeotemperature estimates, suggesting that this and similar models may overestimate past and potentially also future summer temperature changes in Europe.