Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 266
Filtrar
1.
Nature ; 609(7929): 1056-1062, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36071163

RESUMO

Folates are essential nutrients with important roles as cofactors in one-carbon transfer reactions, being heavily utilized in the synthesis of nucleic acids and the metabolism of amino acids during cell division1,2. Mammals lack de novo folate synthesis pathways and thus rely on folate uptake from the extracellular milieu3. The human reduced folate carrier (hRFC, also known as SLC19A1) is the major importer of folates into the cell1,3, as well as chemotherapeutic agents such as methotrexate4-6. As an anion exchanger, RFC couples the import of folates and antifolates to anion export across the cell membrane and it is a major determinant in methotrexate (antifolate) sensitivity, as genetic variants and its depletion result in drug resistance4-8. Despite its importance, the molecular basis of substrate specificity by hRFC remains unclear. Here we present cryo-electron microscopy structures of hRFC in the apo state and captured in complex with methotrexate. Combined with molecular dynamics simulations and functional experiments, our study uncovers key determinants of hRFC transport selectivity among folates and antifolate drugs while shedding light on important features of anion recognition by hRFC.


Assuntos
Microscopia Crioeletrônica , Antagonistas do Ácido Fólico , Metotrexato , Proteína Carregadora de Folato Reduzido , Ânions/metabolismo , Apoproteínas/genética , Apoproteínas/metabolismo , Transporte Biológico , Carbono/metabolismo , Ácido Fólico/metabolismo , Antagonistas do Ácido Fólico/química , Antagonistas do Ácido Fólico/metabolismo , Humanos , Metotrexato/química , Metotrexato/metabolismo , Simulação de Dinâmica Molecular , Proteína Carregadora de Folato Reduzido/genética , Proteína Carregadora de Folato Reduzido/metabolismo , Proteína Carregadora de Folato Reduzido/ultraestrutura , Especificidade por Substrato
2.
Nat Chem Biol ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418906

RESUMO

Nucleoside analogs have broad clinical utility as antiviral drugs. Key to their systemic distribution and cellular entry are human nucleoside transporters. Here, we establish that the human concentrative nucleoside transporter 3 (CNT3) interacts with antiviral drugs used in the treatment of coronavirus infections. We report high-resolution single-particle cryo-electron microscopy structures of bovine CNT3 complexed with antiviral nucleosides N4-hydroxycytidine, PSI-6206, GS-441524 and ribavirin, all in inward-facing states. Notably, we found that the orally bioavailable antiviral molnupiravir arrests CNT3 in four distinct conformations, allowing us to capture cryo-electron microscopy structures of drug-loaded outward-facing and drug-loaded intermediate states. Our studies uncover the conformational trajectory of CNT3 during membrane transport of a nucleoside analog antiviral drug, yield new insights into the role of interactions between the transport and the scaffold domains in elevator-like domain movements during drug translocation, and provide insights into the design of nucleoside analog antiviral prodrugs with improved oral bioavailability.

3.
PLoS Genet ; 19(1): e1010601, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36706155

RESUMO

Timely detection and repair of envelope damage are paramount for bacterial survival. The Regulator of Capsule Synthesis (Rcs) stress response can transduce the stress signals across the multilayered gram-negative cell envelope to regulate gene expression in the cytoplasm. Previous studies defined the overall pathway, which begins with the sensory lipoprotein RcsF interacting with several outer membrane proteins (OMPs). RcsF can also interact with the periplasmic domain of the negative regulator IgaA, derepressing the downstream RcsCDB phosphorelay. However, how the RcsF/IgaA interaction is regulated at the molecular level to activate the signaling in response to stress remains poorly understood. In this study, we used a site-saturated mutant library of rcsF to carry out several independent genetic screens to interrogate the mechanism of signal transduction from RcsF to IgaA. We analyzed several distinct classes of rcsF signaling mutants, and determined the region of RcsF that is critically important for signal transduction. This region is bifunctional as it is important for RcsF interaction with both IgaA and OMPs. The mutant analysis provides strong evidence for conformational changes in the RcsF/OMP complex mediating signal transduction to IgaA, and the first direct evidence that OMPs play an important regulatory role in Rcs signaling.


Assuntos
Proteínas da Membrana Bacteriana Externa , Proteínas de Escherichia coli , Escherichia coli , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Celular/genética , Membrana Celular/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Transdução de Sinais/genética
4.
Proc Natl Acad Sci U S A ; 120(50): e2310933120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38060566

RESUMO

Mechanosensitive PIEZO channels constitute potential pharmacological targets for multiple clinical conditions, spurring the search for potent chemical PIEZO modulators. Among them is Yoda1, a widely used synthetic small molecule PIEZO1 activator discovered through cell-based high-throughput screening. Yoda1 is thought to bind to PIEZO1's mechanosensory arm domain, sandwiched between two transmembrane regions near the channel pore. However, how the binding of Yoda1 to this region promotes channel activation remains elusive. Here, we first demonstrate that cross-linking PIEZO1 repeats A and B with disulfide bridges reduces the effects of Yoda1 in a redox-dependent manner, suggesting that Yoda1 acts by perturbing the contact between these repeats. Using molecular dynamics-based absolute binding free energy simulations, we next show that Yoda1 preferentially occupies a deeper, amphipathic binding site with higher affinity in PIEZO1 open state. Using Yoda1's binding poses in open and closed states, relative binding free energy simulations were conducted in the membrane environment, recapitulating structure-activity relationships of known Yoda1 analogs. Through virtual screening of an 8 million-compound library using computed fragment maps of the Yoda1 binding site, we subsequently identified two chemical scaffolds with agonist activity toward PIEZO1. This study supports a pharmacological model in which Yoda1 activates PIEZO1 by wedging repeats A and B, providing a structural and thermodynamic framework for the rational design of PIEZO1 modulators. Beyond PIEZO channels, the three orthogonal computational approaches employed here represent a promising path toward drug discovery in highly heterogeneous membrane protein systems.


Assuntos
Ensaios de Triagem em Larga Escala , Canais Iônicos , Canais Iônicos/metabolismo , Descoberta de Drogas , Sítios de Ligação , Termodinâmica , Mecanotransdução Celular/fisiologia
5.
Proc Natl Acad Sci U S A ; 120(5): e2212755120, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36693100

RESUMO

Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis (TB), a disease that claims ~1.6 million lives annually. The current treatment regime is long and expensive, and missed doses contribute to drug resistance. Therefore, development of new anti-TB drugs remains one of the highest public health priorities. Mtb has evolved a complex cell envelope that represents a formidable barrier to antibiotics. The Mtb cell envelop consists of four distinct layers enriched for Mtb specific lipids and glycans. Although the outer membrane, comprised of mycolic acid esters, has been extensively studied, less is known about the plasma membrane, which also plays a critical role in impacting antibiotic efficacy. The Mtb plasma membrane has a unique lipid composition, with mannosylated phosphatidylinositol lipids (phosphatidyl-myoinositol mannosides, PIMs) comprising more than 50% of the lipids. However, the role of PIMs in the structure and function of the membrane remains elusive. Here, we used multiscale molecular dynamics (MD) simulations to understand the structure-function relationship of the PIM lipid family and decipher how they self-organize to shape the biophysical properties of mycobacterial plasma membranes. We assess both symmetric and asymmetric assemblies of the Mtb plasma membrane and compare this with residue distributions of Mtb integral membrane protein structures. To further validate the model, we tested known anti-TB drugs and demonstrated that our models agree with experimental results. Thus, our work sheds new light on the organization of the mycobacterial plasma membrane. This paves the way for future studies on antibiotic development and understanding Mtb membrane protein function.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Fosfatidilinositóis/metabolismo , Mycobacterium tuberculosis/metabolismo , Membrana Celular/metabolismo , Tuberculose/microbiologia , Antituberculosos/metabolismo
6.
FASEB J ; 38(1): e23374, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38161283

RESUMO

This study was undertaken to identify and characterize the first ligands capable of selectively identifying nicotinic acetylcholine receptors containing α7 and ß2 subunits (α7ß2-nAChR subtype). Basal forebrain cholinergic neurons express α7ß2-nAChR. Here, they appear to mediate neuronal dysfunction induced by the elevated levels of oligomeric amyloid-ß associated with early Alzheimer's disease. Additional work indicates that α7ß2-nAChR are expressed across several further critically important cholinergic and GABAergic neuronal circuits within the central nervous system. Further studies, however, are significantly hindered by the inability of currently available ligands to distinguish heteromeric α7ß2-nAChR from the closely related and more widespread homomeric α7-only-nAChR subtype. Functional screening using two-electrode voltage-clamp electrophysiology identified a family of α7ß2-nAChR-selective analogs of α-conotoxin PnIC (α-CtxPnIC). A combined electrophysiology, functional kinetics, site-directed mutagenesis, and molecular dynamics approach was used to further characterize the α7ß2-nAChR selectivity and site of action of these α-CtxPnIC analogs. We determined that α7ß2-nAChR selectivity of α-CtxPnIC analogs arises from interactions at a site distinct from the orthosteric agonist-binding site shared between α7ß2- and α7-only-nAChR. As numerous previously identified α-Ctx ligands are competitive antagonists of orthosteric agonist-binding sites, this study profoundly expands the scope of use of α-Ctx ligands (which have already provided important nAChR research and translational breakthroughs). More immediately, analogs of α-CtxPnIC promise to enable, for the first time, both comprehensive mapping of the distribution of α7ß2-nAChR and detailed investigations of their physiological roles.


Assuntos
Receptores Nicotínicos , Receptor Nicotínico de Acetilcolina alfa7 , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Colinérgicos , Sítios de Ligação , Neurônios GABAérgicos/metabolismo , Antagonistas Nicotínicos/farmacologia
7.
Proc Natl Acad Sci U S A ; 119(48): e2208058119, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36409917

RESUMO

The B cell and T cell antigen receptors (BCR and TCR) share a common architecture in which variable dimeric antigen-binding modules assemble with invariant dimeric signaling modules to form functional receptor complexes. In the TCR, a highly conserved T cell receptor αß (TCRαß) transmembrane (TM) interface forms a rigid structure around which its three dimeric signaling modules assemble through well-characterized polar interactions. Noting that the key features stabilizing this TCRαß TM interface also appear with high evolutionary conservation in the TM sequences of the membrane immunoglobulin (mIg) heavy chains that form the BCR's homodimeric antigen-binding module, we asked whether the BCR contained an analogous TM structure. Using an unbiased biochemical and computational modeling approach, we found that the mouse IgM BCR forms a core TM structure that is remarkably similar to that of the TCR. This structure is reinforced by a network of interhelical hydrogen bonds, and our model is nearly identical to the arrangement observed in the just-released cryo-electron microscopy (cryo-EM) structures of intact human BCRs. Our biochemical analysis shows that the integrity of this TM structure is vital for stable assembly with the BCR signaling module CD79AB in the B cell endoplasmic reticulum, and molecular dynamics simulations indicate that BCRs of all five isotypes can form comparable structures. These results demonstrate that, despite their many differences in composition, complexity, and ligand type, TCRs and BCRs rely on a common core TM structure that has been shaped by evolution for optimal receptor assembly and stability in the cell membrane.


Assuntos
Receptores de Antígenos de Linfócitos B , Linfócitos T , Humanos , Camundongos , Animais , Receptores de Antígenos de Linfócitos B/metabolismo , Linfócitos T/metabolismo , Microscopia Crioeletrônica , Receptores de Antígenos de Linfócitos T/metabolismo , Membrana Celular/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/metabolismo
8.
J Struct Biol ; 216(1): 108061, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38185342

RESUMO

The low sensitivity of nuclear magnetic resonance (NMR) is a major bottleneck for studying biomolecular structures of complex biomolecular assemblies. Cryogenically cooled probe technology overcomes the sensitivity limitations enabling NMR applications to challenging biomolecular systems. Here we describe solid-state NMR studies of the human blood protein vitronectin (Vn) bound to hydroxyapatite (HAP), the mineralized form of calcium phosphate, using a CryoProbe designed for magic angle spinning (MAS) experiments. Vn is a major blood protein that regulates many different physiological and pathological processes. The high sensitivity of the CryoProbe enabled us to acquire three-dimensional solid-state NMR spectra for sequential assignment and characterization of site-specific water-protein interactions that provide initial insights into the organization of the Vn-HAP complex. Vn associates with HAP in various pathological settings, including macular degeneration eyes and Alzheimer's disease brains. The ability to probe these assemblies at atomic detail paves the way for understanding their formation.


Assuntos
Durapatita , Vitronectina , Humanos , Espectroscopia de Ressonância Magnética/métodos , Imageamento por Ressonância Magnética , Ressonância Magnética Nuclear Biomolecular/métodos
9.
J Comput Chem ; 45(9): 512-522, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37991280

RESUMO

Peptides and proteins play crucial roles in membrane remodeling by inducing spontaneous curvature. However, extracting spontaneous curvatures from simulations of asymmetric bilayers is challenging because differential stress (i.e., the difference of the leaflet surface tensions) arising from leaflet area strains can vary substantially among initial conditions. This study investigates peptide-induced spontaneous curvature δc 0 p in asymmetric bilayers consisting of a single lipid type and a peptide confined to one leaflet; δc 0 p is calculated from the Helfrich equation using the first moment of the lateral pressure tensor and an alternative expression using the differential stress. It is shown that differential stress introduced during initial system generation is effectively relaxed by equilibrating using P21 periodic boundary conditions, which allows lipids to switch leaflets across cell boundaries and equalize their chemical potentials across leaflets. This procedure leads to robust estimates of δc 0 p for the systems simulated, and is recommended when equality of chemical potentials between the leaflets is a primary consideration.


Assuntos
Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Peptídeos
10.
Nat Chem Biol ; 18(7): 713-723, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35484435

RESUMO

Despite advances in resolving the structures of multi-pass membrane proteins, little is known about the native folding pathways of these complex structures. Using single-molecule magnetic tweezers, we here report a folding pathway of purified human glucose transporter 3 (GLUT3) reconstituted within synthetic lipid bilayers. The N-terminal major facilitator superfamily (MFS) fold strictly forms first, serving as a structural template for its C-terminal counterpart. We found polar residues comprising the conduit for glucose molecules present major folding challenges. The endoplasmic reticulum membrane protein complex facilitates insertion of these hydrophilic transmembrane helices, thrusting GLUT3's microstate sampling toward folded structures. Final assembly between the N- and C-terminal MFS folds depends on specific lipids that ease desolvation of the lipid shells surrounding the domain interfaces. Sequence analysis suggests that this asymmetric folding propensity across the N- and C-terminal MFS folds prevails for metazoan sugar porters, revealing evolutionary conflicts between foldability and functionality faced by many multi-pass membrane proteins.


Assuntos
Proteínas Facilitadoras de Transporte de Glucose , Bicamadas Lipídicas , Animais , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Transportador de Glucose Tipo 3/metabolismo , Humanos , Bicamadas Lipídicas/química , Proteínas de Membrana/metabolismo , Dobramento de Proteína , Estrutura Secundária de Proteína
11.
J Chem Inf Model ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38959405

RESUMO

Alchemical relative binding free energy (ΔΔG) calculations have shown high accuracy in predicting ligand binding affinity and have been used as important tools in computer-aided drug discovery and design. However, there has been limited research on the application of ΔΔG methods to membrane proteins despite the fact that these proteins represent a significant proportion of drug targets, play crucial roles in biological processes, and are implicated in numerous diseases. In this study, to predict the binding affinity of ligands to G protein-coupled receptors (GPCRs), we employed two ΔΔG calculation methods: thermodynamic integration (TI) with AMBER and the alchemical transfer method (AToM) with OpenMM. We calculated ΔΔG values for 53 transformations involving four class A GPCRs and evaluated the performance of AMBER-TI and AToM-OpenMM. In addition, we conducted tests using different numbers of windows and varying simulation times to achieve reliable ΔΔG results and to optimize resource utilization. Overall, both AMBER-TI and AToM-OpenMM show good agreement with the experimental data. Our results validate the applicability of AMBER-TI and AToM-OpenMM for optimization of lead compounds targeting membrane proteins.

12.
J Comput Chem ; 44(4): 594-601, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36398990

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus causing COVID-19, has continued to mutate and spread worldwide despite global vaccination efforts. In particular, the Omicron variant, first identified in South Africa in late November 2021, has become the dominant strain worldwide. Compared to the original strain identified in Wuhan, Omicron features 50 genetic mutations, with 15 mutations in the receptor-binding domain (RBD) of the spike protein, which binds to the human angiotensin-converting enzyme 2 (ACE2) receptor for viral entry. However, it is not completely understood how these mutations alter the interaction and binding strength between the Omicron RBD and ACE2. In this study, we used a combined steered molecular dynamics (SMD) simulation and experimental microscale thermophoresis (MST) approach to quantify the interaction between Omicron RBD and ACE2. We report that the Omicron brings an enhanced RBD-ACE2 interface through N501Y, Q498R, and T478K mutations; the changes further lead to unique interaction patterns, reminiscing the features of previously dominated variants, Alpha (N501Y) and Delta (L452R and T478K). Among the Q493K and Q493R, we report that Q493R shows stronger binding to ACE2 than Q493K due to increased interactions. Our MST data confirmed that the Omicron mutations in RBD are associated with a five-fold higher binding affinity to ACE2 compared to the RBD of the original strain. In conclusion, our results could help explain the Omicron variant's prevalence in human populations, as higher interaction forces or affinity for ACE2 likely promote greater viral binding and internalization, leading to increased infectivity.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2 , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , SARS-CoV-2/genética
13.
J Chem Inf Model ; 63(15): 4772-4779, 2023 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-37462607

RESUMO

Molecular docking is a preferred method to predict ligand binding modes and their binding energy to target protein receptors, which is critical in early phase structure-based drug discovery. However, there is a persistent challenge in docking that can be attributed to the induced fit effect, as receptor binding sites undergo induced fit conformational changes upon ligand binding to achieve better binding modes. In this work, based on CHARMM-GUI LBS Finder& Refiner and High-Throughput Simulator, we present a straightforward CHARMM-GUI induced fit docking (CGUI-IFD) workflow to generate reliable protein-ligand binding modes. The CGUI-IFD workflow generates an ensemble of receptor binding site conformations through ligand-binding site (LBS) refinement, runs rigid receptor docking, and performs high-throughput molecular dynamics (MD) simulations of protein-ligand complex structures in explicit solvents. The results are evaluated based on the ligand root-mean-square deviation (RMSD)-based binding stability and the molecular mechanics generalized Born surface area binding energy. For a benchmark test, we used 258 cross-docking protein-ligand pairs across 41 target proteins from the Schrodinger IFD-MD data set. The application of CGUI-IFD on this data set shows 80% success rate (within 2.5 Å RMSD from the experimental structures). We expect that the CGUI-IFD workflow can be useful to generate reliable ligand binding modes for cross-docking cases.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Simulação de Acoplamento Molecular , Ligantes , Fluxo de Trabalho , Ligação Proteica , Proteínas/química , Sítios de Ligação
14.
J Chem Inf Model ; 63(5): 1592-1601, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36802606

RESUMO

Capsule is one of the common virulence factors in Gram-negative bacteria protecting pathogens from host defenses and consists of long-chain capsular polysaccharides (CPS) anchored in the outer membrane (OM). Elucidating structural properties of CPS is important to understand its biological functions as well as the OM properties. However, the outer leaflet of the OM in current simulation studies is represented exclusively by LPS due to the complexity and diversity of CPS. In this work, representative Escherichia coli CPS, KLPS (a lipid A-linked form) and KPG (a phosphatidylglycerol-linked form), are modeled and incorporated into various symmetric bilayers with co-existing LPS in different ratios. All-atom molecular dynamics simulations of these systems have been conducted to characterize various bilayer properties. Incorporation of KLPS makes the acyl chains of LPS more rigid and ordered, while incorporation of KPG makes them less ordered and flexible. These results are consistent with the calculated area per lipid (APL) of LPS, in which the APL of LPS becomes smaller when KLPS is incorporated, whereas it gets larger when KPG is included. Torsional analysis reveals that the influence of the CPS presence on the conformational distributions of the glycosidic linkages of LPS is small, and minor differences are also detected for the inner and outer regions of the CPS. Combined with previously modeled enterobacterial common antigens (ECAs) in the form of mixed bilayers, this work provides more realistic OM models as well as the basis for characterization of interactions between the OM and OM proteins.


Assuntos
Membrana Externa Bacteriana , Lipopolissacarídeos , Lipopolissacarídeos/química , Membrana Celular/metabolismo , Proteínas da Membrana Bacteriana Externa/análise , Proteínas da Membrana Bacteriana Externa/química , Proteínas da Membrana Bacteriana Externa/metabolismo , Lipídeo A/metabolismo , Escherichia coli/metabolismo
15.
J Chem Inf Model ; 63(18): 5874-5895, 2023 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-37694948

RESUMO

Homodimeric class 1 cytokine receptors include the erythropoietin (EPOR), thrombopoietin (TPOR), granulocyte colony-stimulating factor 3 (CSF3R), growth hormone (GHR), and prolactin receptors (PRLR). These cell-surface single-pass transmembrane (TM) glycoproteins regulate cell growth, proliferation, and differentiation and induce oncogenesis. An active TM signaling complex consists of a receptor homodimer, one or two ligands bound to the receptor extracellular domains, and two molecules of Janus Kinase 2 (JAK2) constitutively associated with the receptor intracellular domains. Although crystal structures of soluble extracellular domains with ligands have been obtained for all of the receptors except TPOR, little is known about the structure and dynamics of the complete TM complexes that activate the downstream JAK-STAT signaling pathway. Three-dimensional models of five human receptor complexes with cytokines and JAK2 were generated here by using AlphaFold Multimer. Given the large size of the complexes (from 3220 to 4074 residues), the modeling required a stepwise assembly from smaller parts, with selection and validation of the models through comparisons with published experimental data. The modeling of active and inactive complexes supports a general activation mechanism that involves ligand binding to a monomeric receptor followed by receptor dimerization and rotational movement of the receptor TM α-helices, causing proximity, dimerization, and activation of associated JAK2 subunits. The binding mode of two eltrombopag molecules to the TM α-helices of the active TPOR dimer was proposed. The models also help elucidate the molecular basis of oncogenic mutations that may involve a noncanonical activation route. Models equilibrated in explicit lipids of the plasma membrane are publicly available.


Assuntos
Citocinas , Receptores de Citocinas , Humanos , Janus Quinase 2 , Ligantes , Transdução de Sinais
16.
Proc Natl Acad Sci U S A ; 117(31): 18504-18510, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32699145

RESUMO

The human blood protein vitronectin (Vn) is a major component of the abnormal deposits associated with age-related macular degeneration, Alzheimer's disease, and many other age-related disorders. Its accumulation with lipids and hydroxyapatite (HAP) has been demonstrated, but the precise mechanism for deposit formation remains unknown. Using a combination of solution and solid-state NMR experiments, cosedimentation assays, differential scanning fluorimetry (DSF), and binding energy calculations, we demonstrate that Vn is capable of binding both soluble ionic calcium and crystalline HAP, with high affinity and chemical specificity. Calcium ions bind preferentially at an external site, at the top of the hemopexin-like (HX) domain, with a group of four Asp carboxylate groups. The same external site is also implicated in HAP binding. Moreover, Vn acquires thermal stability upon association with either calcium ions or crystalline HAP. The data point to a mechanism whereby Vn plays an active role in orchestrating calcified deposit formation. They provide a platform for understanding the pathogenesis of macular degeneration and other related degenerative disorders, and the normal functions of Vn, especially those related to bone resorption.


Assuntos
Cálcio/metabolismo , Durapatita/metabolismo , Degeneração Macular/metabolismo , Vitronectina/metabolismo , Sítios de Ligação , Cálcio/química , Durapatita/química , Humanos , Ligação Proteica , Vitronectina/química
17.
Biophys J ; 121(20): 3896-3906, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36056555

RESUMO

The adaptability of proteins to their work environments is fundamental for cellular life. Here, we describe how the hemopexin-like domain of the multifunctional blood glycoprotein vitronectin binds Ca2+ to adapt to excursions of temperature and shear stress. Using X-ray crystallography, molecular dynamics simulations, NMR, and differential scanning fluorimetry, we describe how Ca2+ and its flexible hydration shell enable the protein to perform conformational changes that relay beyond the calcium-binding site and alter the number of polar contacts to enhance conformational stability. By means of mutagenesis, we identify key residues that cooperate with Ca2+ to promote protein stability, and we show that calcium association confers protection against shear stress, a property that is advantageous for proteins that circulate in the vasculature, like vitronectin.


Assuntos
Cálcio , Vitronectina , Cálcio/metabolismo , Vitronectina/química , Vitronectina/metabolismo , Ligação Proteica , Hemopexina/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Conformação Proteica
18.
J Comput Chem ; 43(5): 359-375, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34874077

RESUMO

Explicit treatment of electronic polarizability in empirical force fields (FFs) represents an extension over a traditional additive or pairwise FF and provides a more realistic model of the variations in electronic structure in condensed phase, macromolecular simulations. To facilitate utilization of the polarizable FF based on the classical Drude oscillator model, Drude Prepper has been developed in CHARMM-GUI. Drude Prepper ingests additive CHARMM protein structures file (PSF) and pre-equilibrated coordinates in CHARMM, PDB, or NAMD format, from which the molecular components of the system are identified. These include all residues and patches connecting those residues along with water, ions, and other solute molecules. This information is then used to construct the Drude FF-based PSF using molecular generation capabilities in CHARMM, followed by minimization and equilibration. In addition, inputs are generated for molecular dynamics (MD) simulations using CHARMM, GROMACS, NAMD, and OpenMM. Validation of the Drude Prepper protocol and inputs is performed through conversion and MD simulations of various heterogeneous systems that include proteins, nucleic acids, lipids, polysaccharides, and atomic ions using the aforementioned simulation packages. Stable simulations are obtained in all studied systems, including 5 µs simulation of ubiquitin, verifying the integrity of the generated Drude PSFs. In addition, the ability of the Drude FF to model variations in electronic structure is shown through dipole moment analysis in selected systems. The capabilities and availability of Drude Prepper in CHARMM-GUI is anticipated to greatly facilitate the application of the Drude FF to a range of condensed phase, macromolecular systems.


Assuntos
Simulação de Dinâmica Molecular , Software
19.
Chemistry ; 28(21): e202200116, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35238091

RESUMO

Membrane proteins are of biological and pharmaceutical significance. However, their structural study is extremely challenging mainly due to the fact that only a small number of chemical tools are suitable for stabilizing membrane proteins in solution. Detergents are widely used in membrane protein study, but conventional detergents are generally poor at stabilizing challenging membrane proteins such as G protein-coupled receptors and protein complexes. In the current study, we prepared tandem triazine-based maltosides (TZMs) with two amphiphilic triazine units connected by different diamine linkers, hydrazine (TZM-Hs) and 1,2-ethylenediamine (TZM-Es). These TZMs were consistently superior to a gold standard detergent (DDM) in terms of stabilizing a few membrane proteins. In addition, the TZM-Es containing a long linker showed more general protein stabilization efficacy with multiple membrane proteins than the TZM-Hs containing a short linker. This result indicates that introduction of the flexible1,2-ethylenediamine linker between two rigid triazine rings enables the TZM-Es to fold into favourable conformations in order to promote membrane protein stability. The novel concept of detergent foldability introduced in the current study has potential in rational detergent design and membrane protein applications.


Assuntos
Detergentes , Proteínas de Membrana , Detergentes/química , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/química , Estabilidade Proteica , Triazinas
20.
Langmuir ; 38(19): 5955-5962, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35503859

RESUMO

Lipid self-organization and lipid-water interfaces have been an increasingly important topic positioned at the crossroads of physical chemistry and biology. Some neutral lipids can partition into the biomembrane and play an important biological role. In this study, we have used all-atom molecular dynamics simulations to dissect the partition, aggregation, flip-flop, and modulation of neutral lipids including (i) menaquinone/menaquinol, (ii) ubiquinone/ubiquinol, and (iii) triacylglycerol. The partitioning of these molecules is driven by the balancing force between headgroup hydrophilicity and acyl chain hydrophobicity as well as the lipid shapes. We then discuss the emerging questions in this area, share our own perspectives, and mention the development of the CHARMM-GUI membrane modeling platform, which enables further computational investigations into those questions.


Assuntos
Bicamadas Lipídicas , Simulação de Dinâmica Molecular , Membrana Celular/química , Interações Hidrofóbicas e Hidrofílicas , Bicamadas Lipídicas/química , Membranas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA